SuSoS

Because Surface Matters.[™]

Hochauftösende Oberflächenanalytik an Polymer Substraten

SuSoS AG Sina Göhl / Samuele Tosatti 12. Januar 2022

- SuSoS
- Thin film and thin film analysis
- Polymers and polymer films: strengths and weaknesses
- Examples:
 - Detection of contaminants on surfaces
 - Activation of polymer surfaces
 - Roughness of a thin film by XPS
 - Chemical imaging and Orientation of Thinfilms
- Summary

SuSoS because surface matters. A lot.

 We focus on those 50 nanometers that make the difference, so our customers can take care of everything else.

- SuSoS because surface is tough.
- But solutions must be simple.

- SuSoS because truly understanding is most of the solution.
- Guiding customers through hard decisions is key to long-lasting relationships.

SuSoS Functional Polymer Thinfilms

- Applications
 - Medical Devices
 - Microfluidics
 - Diagnostics
 - And many more...
- Functionalities
 - Non-Fouling
 - High Lubricity in wet and dry state
 - Adhesion of anything to anything
 - Selective bonding
 - And even more...

Thin film and thin film analysis

- At SuSoS we focus on the **topmost atomic/molecular layers** of a product
- Surface Analysis Techniques at SuSoS:
 - X-ray Photoelectron Spectroscopy → qualitative and quantitative evaluation of chemical/atomic composition
 - Time of Flight Secondary Ion Mass Spectrometry \rightarrow qualitative chemical/molecular composition
 - − Variable Angle Spectro Ellipsometry \rightarrow Thin Film Thickness
 - Micro Tribology and Indentation \rightarrow Friction and Lubricity
 - Microscopy/AFM → Optical Appearance and Surface Roughness
 - Particle Counting \rightarrow Amount of Particles in Solutions

Method	X-Ray Photoelectron Spectroscopy	Time of Flight Secondary Ion Mass Spectrometry	Energy Dispersive X-Ray Spectroscopy
	XPS	ToF-SIMS	EDX
Information depth	5-10 nm	1-2 nm	1-3 μm (= 1'000-3'000 nm)

Polymers and polymer films: strengths and weaknesses

Why Polymers?

- As Substrate
 - Often used in Medical Devices, Diagnostics or Microfluidics
 - Injection molded substrates are flexible, easy to produce with high accuracy and very small features and structures
 - High throughput with constant quality
- As Thin Film Coating
 - Functional groups can be easily exchanged and tuned to customer needs
 - With the right binding group polymer thin films can be bound to any substrate, even polymers
 - High flexibility, throughput and tunability

What obstacles in analysis can occur?

- Lack of Conductivity
- Carbon is Carbon
- Roughness
- De-gassing behavior

How can some of these be overcome for example with XPS?

- charge compensation
- different binding partners = different binding energy
- Nano morphology can be analyzed

XPS Standard measurements

- Detection of contaminants on surfaces \rightarrow Silicone Substrate with superficial C-F₂ Contamination
- Activation of polymer surfaces → O2 plasma treatment reduces contamination levels and activates surface for further treatment/coating
- Evaluation of Polymer Coatings on Polymer Substrates → Non-fouling coating on silicone substrate can be detected due to additional coating related elements and binding groups

At%	С	Ο	Ν	F	Si
As received	45.7	26.8	0.0	2.8	24.7
after O2 plasma	18.5	53.9	0.0	0.0	27.6
Non fouling coating	40.3	34.0	4.3	0.7	20.6

XPS Standard measurements

- Detection of contaminants on surfaces \rightarrow Silicone Substrate with superficial C-F₂ Contamination
- Activation of polymer surfaces → O2 plasma treatment reduces contamination levels and activates surface for further treatment/coating
- Evaluation of Polymer Coatings on Polymer Substrates → Non-fouling coating on silicone substrate can be detected due to additional coating related elements and binding groups

© SuSoS AG | Confide

How does Morphology influence XPS

spectrum of emitted electrons:

$$J(E, \Omega) = \int dE_0 F(E_0, \Omega) \int ds \ e^{-i2\pi s(E-E_0)} \int dx \ f(x) e^{-x \sum(s)/\cos(\theta)}$$
Intrinsic spectrum at all positions
Background

$$\sum(s) = \frac{1}{\lambda} - \int_0^\infty \frac{f(x)}{K(T)} e^{-isT} dT$$

$$f(x) \rightarrow \text{ sources: concentration of atoms at depth x}$$

$$K(T) \rightarrow \text{ scatterer: probability that electron will lose energy}$$

S. Tougaard, Surf. Interface Anal. 25 (1997) 137-154

Roughness of a thin film by XPS

- AziGrip4[™] Amine on SiO₂/Si
 - Substrate: Si and O
 - Polymer: C, N, O and F

Results from Background Analysis

Polymer Hypergradients

- Hypergradient of two different Polymers
 Polystyrene (PS)
 Polyvinylpyrrolidone (PVP)
- only aliphatic C

- N-C=O

- aliphatic C

H

Gradient Patterns

The difference in chemical composition of both polymers can be used to make hypergradients "visible" via *Chemical Imaging*

© SuSoS AG | Confidential

Image collection with XPS

- N/C ration calculated for each pixel
- The percentage of PS was then estimated by assigning the ratio found on pure PVP to 100 % PVP, and N/C=0 to 100 % PS according to:

$$PS_{frac} = 1 - \frac{\left(\frac{N}{C}_{frac} - \frac{N}{C}_{PVP}\right)}{\left(\frac{N}{C}_{PS} - \frac{N}{C}_{PVP}\right)}$$

Comparison of Imaging Techniques

ToF-SIMS (~400 nm) 500 µm

- Lateral resolution is limited to size of X-ray beam.
- A semi-quantitative answer is possible at each acquired pixel.

© Spatially Controlled Polymer Adlayers for Biological Applications from Patterns to Hypergradients , Dissertation O. Sterner, 2014, ETH Zurich © SuSoS AG | Confidential

- ToF-SIMS alternative for higher resolution images BUT
 - limited in terms of samples
 - quantification hardly possible

Summary

- Polymers are flexible, versatile applicable materials used in Medical Devices, Diagnostics, Microfluidics and many other applications
- Polymer Thinfilms can be tuned in many ways with versatile functionalities, such as Non-fouling, high lubricity, selective binding, adhesion promotion and many more.
- By chosing the right bonding groups many materials can be treated, such as metals, ceramics, glass and plastics.
- The analysis of polymers can be hindered by various factors such as non-conductivity, carbon=carbon, surface roughness or degasing behavior.
- In XPS these obstacles can be mostly overcome and information on the qualitative and quantitave chemical composition can be obtained.
- With Inelastic Background Analysis the Nanomorphology of substrates and thinfilms can be assessed.
- With Imaging XPS even hypergradients of different polymers can be mapped and quantified.

Dr. Samuele Tosatti Founder and CEO Mobile: +41 76 349 31 62 E-mail: <u>samuele.tosatti@susos.com</u>

Daniele Rezzonico Member of the Executive Board Mobile: +41 76 3 878 373 E-mail: dr@susos.com

Sina Goehl COO Direct: +41 44 801 80 56 E-mail: sgoehl@susos.com

SuSoS AG Lagerstrasse 14 CH-8600 Dübendorf Tel: +41 44 801 80 50 www.susos.com

© SuSoS AG | Confidential