NCC Ost

снициента

High Temperature Heat Pumps

- 1) Market & Research Status, Refrigerants, Application Potentials
- 2) Results with a laboratory-scale heat pump using HCFO R1233zd

<u>Cordin Arpagaus¹</u>, Frédéric Bless¹, Michael Uhlmann¹, Elias Büchel¹, Stefan Frei¹, Jürg Schiffmann², Stefan S. Bertsch¹

¹ NTB University of Applied Sciences of Technology Buchs, Switzerland ² Ecole Polytechnique Fédérale de Lausanne, Switzerland

In cooperation with the CTI

Commission for Technology and Innovation CTI

Chillventa, 15 October 2018, Nuremberg

Outline

- **1) Market overview** (application potentials, industrial processes, commercial products, operating ranges, efficiencies)
- 2) **Research status** (heat pump cycles, efficiency, temperature lifts)
- 3) **Refrigerants** (selection criteria, properties)
- **4) Simulation results** of a one-stage heat pump cycle comparing different HFO and HFCO refrigerants
- **5) Experimental test results** of a laboratory-scale high temperature heat pump using R1233zd(E) refrigerant
- 6) Conclusions

Classification of High Temperature Heat Pumps (HTHPs)

Focus on vapor compression heat pumps Heat pumps Closed Open systems systems Mechanical vapor Thermal vapor Compression Sorption recompression recompression heat pumps systems

adapted from Nellissen und Wolf (2015)

Development of temperature levels

HP: conventional heat pump HTHP: high temperature heat pump VHTHP: very high temperature heat pump

adapted from Bobelin et al. (2012), IEA (2014), Jakobs und Laue (2015), Peureux et al. (2012, 2014) 4

HTHPs with heat sink temperatures of 100 to 150°C are suitable systems for heat recovery in various industrial processes

Technical market potential of process heat in Europe – accessible with industrial heat pumps distributed by temperature and industrial sector

SCCER

Temperature levels of industrial processes & Heat Pump Technology Readiness

EFFICIENCY OF

							em	npe	ratu	ire)				
Sector	Process	20	40	•	50	80	10	00	120	14	40	160	18	30 2	200 '
	Drying														
Paper	Boiling														
	Bleaching														
	De-inking														
	Drying														
	Evaporation														
	Pasteurization														Τ
Food &	Sterilization														
	Boiling														Τ
	Distillation														
beverages	Blanching														
	Scalding														
	Concentration														
	Tempering														
	Smoking														Τ
	Destillation														T
	Compression														Т
Chamiagla	Thermoforming														Τ
Chemicals	Concentration														Τ
	Boiling														T
	Bioreactions														Τ

Temperature levels of industrial processes & Heat Pump Technology Readiness

EFFICIENCY OF

							Т	en	npe	era	tur	е					
Sector	Process	20	4	0	6	0	80	1	00	12	20 1	40	10	60	18 1	0 2	200
																_	
	Drying																_
Paper	Boiling																
i upoi	Bleaching																
	De-inking																
	Drying																
	Evaporation																
	Pasteurization																
	Sterilization																
	Boiling																
FOOD &	Distillation																
beverages	Blanching																
	Scalding																
	Concentration																
	Tempering																
	Smoking																
	Destillation																
	Compression																
<u>.</u>	Thermoforming								Γ								
Chemicals	Concentration																
	Boiling																
	Bioreactions															-	
Automotive	Resin molding																
	Drying																
	Pickling																
	Degreasing																
Metal	Electroplating											1					
	Phosphating											1					
	Chromating								L			1					
	Purging																
	5 5		_						_	_		_			_	_	_

Sector Process 20 40 60 80 100 120 140 160 180 20 Plastic Injection modling Pellets drying Image: Coloring Image: C							٦	en	npe	ratu	ire					
Plastic Injection modling Image: Coloring Image:	Sector	Process	20	40) (60	80) 1	00	120	14	10 1	60 1	80	20	0
Injection modling Image: Coloring Image: Coloring <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>																
Plastic Pellets drying Image: Coloring Image: Co		Injection modling														
Preheating Image: Coloring Image	Plastic	Pellets drying														
Mechanical engineering Surface treatment Image: Coloring		Preheating														
engineering Cleaning Image: Clea	Mechanical	Surface treatment														
Coloring Image:	engineering	Cleaning														
Drying Image: Constraint of the second sec		Coloring														
Washing Image: Constraint of the second se	Toytiloo	Drying														
Bleaching Image: Constraint of the second	Textiles	Washing														
Glueing Image: Constraint of the second se		Bleaching														
Pressing Image: Constraint of the second s		Glueing														
Drying Image: Constraint of the second sec		Pressing														
Wood Steaming Cocking Staining		Drying														
Cocking Staining Pickling	Wood	Steaming														
Staining Pickling		Cocking														
Pickling		Staining														
		Pickling														
Hot water		Hot water														
Several Preheating	Several	Preheating														
sectors Washing/Cleaning	sectors	Washing/Cleaning													Τ	
Space heating		Space heating														

Technology Readiness Level (TRL):

conventional HP < 80°C, established in industry commercial available HP 80 - 100°C, key technology prototype status, technology development, HTHP 100 - 140°C laboratory research, functional models, proof of concept, VHTHP > 140°C

Data sources: Brunner et al. (2007), Hartl et al. (2015), IEA (2014), Kalogirou (2003), Lambauer et al. (2012), Lauterbach et al. (2012), Noack (2016), Ochsner (2015), Rieberer et al. (2015), Watanabe (2013), Weiss (2007, 2005), Wolf et al. (2014)

Example of an industrial high temperature heat pump

Other examples of commercial high temperature heat pumps

Kobelco SGH 120/165 (Steam Grow HP)

HeatBooster S4 (Viking Heating Engines AS)

Thermeco₂ HHR 1000 (Engie, ex-Hafner-Muschler, ex-Dürr thermea)

gas cooler B gas cooler A R744 transcritical (1) (/1) -10-40°C (20°C)

cordin.arpagaus@ntb.ch

95°C

0

> 20 industrial HTHPs with heat supply temperature above 90 °C exist

EFFICIENCY OF

COP range between 1.6 to 5.8 at temperature lifts of 130 to 40 K

• Kobelco SGH 120/165 ○ Kobelco HEM-HR90 HeatBooster S4 Ochsner IWWDSS R2R3b Ochsner IWWDS ER3b ♦ Ochsner IWWDS ER3c4 ♦ Hybrid Heat Pump ▲ Unitop 22/22 △ Combitherm ■ GEA Grasso FX P Star Refrigeration Neatpump □ SABROE HeatPAC HPX □ Vitocal 350-HT Pro △ Mitsubishi ETW-L

(Arpagaus et al., 2017, 2018)

 $(\Delta T between heat sink out and heat source in)$

What are the research gaps for HTHPs ?

SCCEF EFFICIENCY INDUSTRIAL PROCE

1) Pushing HTHPs from the laboratory scale towards industry 2) Extending the limits of heat supply temperatures to higher values Improving heat pump efficiency 3) 4) Testing new environmentally friendly refrigerants

17 research projects on HTHPs with heat supply temperatures > 100 °C

Organisation, Project partners	Country			Heat source (blue) and heat supply (red) temperatures [°C] 40 60 80 100 120 140						
		20)	40	60	80	100	120	140	160
Austrian Institute of Technology, Vienna, Chemours, Bitzer, Austria		-								
Austrian Institute of Technology, Vienna, Chemours, Bitzer, Austria										
PACO, University Lyon, EDF Electricité de France		-								
Institute of Air Handling and Refrigeration, Dresden, Germany										
Friedrich-Alexander University Erlangen-Nürnberg, Siemens, Germany										
Alter ECO, EDF Electricité de France										
Tokyo Electric Power Company, Japan										
Austrian Institute of Technology, Edtmayer, Ochsner, Austria										
Tianjin University, China	*1									
Kyushu University, Fukuoka, Japan										
ECN, SmurfitKappa, IBK, Bronswerk, The Netherlands										
Korea Institute of Energy Research, Daejeon, Korea								-		
GREE Electric Appliances, Zhuhai, China	*]:									
Norwegian University of Science and Technology, SINTEF, Norway										
Technical University Graz, Austria										
Tianjin University, China	*1:									
EDF Electricité de France, Johnson Controls										

17 research projects on HTHPs with different cycles

Organisation, Project partners	Country	Heat source (blue) and heat supply (red) temperatures [°C]	Cycle type		
		20 40 60 80 100 120 140 160			
Austrian Institute of Technology, Vienna, Chemours, Bitzer, Austria			Single-stage with IHX		
Austrian Institute of Technology, Vienna, Chemours, Bitzer, Austria			Single-stage		
PACO, University Lyon, EDF Electricité de France			Flash tank		
Institute of Air Handling and Refrigeration, Dresden, Germany			Single-stage		
Friedrich-Alexander University Erlangen-Nürnberg, Siemens, Germany			Single-stage with IHX		
Alter ECO, EDF Electricité de France			Single-stage with IHX and subcooler		
Tokyo Electric Power Company, Japan			Single-stage with IHX		
Austrian Institute of Technology, Edtmayer, Ochsner, Austria			Single-stage with economizer		
Tianjin University, China	*1		Single-stage		
Kyushu University, Fukuoka, Japan	•		Single-stage		
ECN, SmurfitKappa, IBK, Bronswerk, The Netherlands			Single-stage with IHX and subcooler		
Korea Institute of Energy Research, Daejeon, Korea			Single-stage with steam generation		
GREE Electric Appliances, Zhuhai, China	*1		Single-stage with IHX		
Norwegian University of Science and Technology, SINTEF, Norway			Two-stage cascade		
Technical University Graz, Austria			Single-stage with IHX		
Tianjin University, China	*1		Single-stage		
EDF Electricité de France, Johnson Controls			Single-stage with IHX and economizer		

17 research projects on HTHPs with different heating capacities

EFFICIENCY OF

Organisation, Project partners	Country	Heat source (blue) and heat supply (red) temperatures [°C]	Cycle type	Compressor	Refrigerant	Heating capacity [kW]	References
		20 40 60 80 100 120 140 160				-	
Austrian Institute of Technology, Vienna, Chemours, Bitzer, Austria			Single-stage with IHX	Piston	R1336mzz(Z)	12	Helminger et al. (2016)
Austrian Institute of Technology, Vienna, Chemours, Bitzer, Austria			Single-stage	Piston	R1336mzz(Z)	12	Fleckl et al. (2015)
PACO, University Lyon, EDF Electricité de France			Flash tank	Twin screw	R718	300	Chamoun et al. (2014, 2013, 2012)
Institute of Air Handling and Refrigeration, Dresden, Germany			Single-stage	Piston	HT 125	12	Noack (2016)
Friedrich-Alexander University Erlangen-Nürnberg, Siemens, Germany			Single-stage with IHX	Piston	LG6	10	Reißner (2015), Reißner et al. (2013)
Alter ECO, EDF Electricité de France			Single-stage with IHX and subcooler	Twin scroll	ECO3 (R245fa)	50-200	Bobelin et al. (2012), IEA (2014)
Tokyo Electric Power Company, Japan			Single-stage with IHX	Screw	R601	150-400	Yamazaki and Kubo (1985)
Austrian Institute of Technology, Edtmayer, Ochsner, Austria			Single-stage with economizer	Screw	ÖKO1 (R245fa)	250-400	Wilk et al. (2016)
Tianjin University, China	*1		Single-stage	Scroll	BY-5	16-19	Zhang et al. (2017)
Kyushu University, Fukuoka, Japan			Single-stage	Twin rotary	R1234ze(Z)	1.8	Fukuda et al. (2014)
ECN, SmurfitKappa, IBK, Bronswerk, The Netherlands			Single-stage with IHX and subcooler	Piston	R600	160	Wemmers et al. (2017)
Korea Institute of Energy Research, Daejeon, Korea			Single-stage with steam generation	Piston	R245fa/R718	20-40	Lee et al. (2017)
GREE Electric Appliances, Zhuhai, China	*1		Single-stage with IHX	Scroll	R245fa	6-12	Huang et al. (2017)
Norwegian University of Science and Technology, SINTEF, Norway	╂		Two-stage cascade	Piston	R600/R290	20-30	Bamigbetan et al. (2017)
Technical University Graz, Austria			Single-stage with IHX	Piston	R600	20-40	Moisi et al. (2017)
Tianjin University, China	*1		Single-stage	Double scroll	BY-4	44-141	Yu et al. (2014)
EDF Electricité de France, Johnson Controls			Single-stage with IHX and economizer	Twin screw, turbo	R245fa	300-500 900-1′200	Assaf et al. (2010), IEA (2012, 2014), Peureux et al. (2014)

cordin.arpagaus@ntb.ch

(Arpagaus et al., 2017, 2018)

R&D projects push COPs and heat supply temperatures to higher levels

cordin.arpagaus@ntb.ch

(Arpagaus et al., 2017, 2018)

What would be the perfect refrigerant?

EFFICIENCY OF INDUSTRIAL PROCESSES

Criteria	Required properties								
Thermal suitability	High critical temperature (> 150°C),								
	low critical pressure (< 30 bar)								
Environmental	ODP = 0, low GWP, short atmospheric life								
Safety	Non-toxic, no or only low flammability								
Efficiency	High COP, low pressure ratio, minimal overheat								
	to prevent fluid compression, high volumetric								
	heating capacity								
Availability	Available on the market, low price								
Other factors	Good solubility in oil, thermal stability of the								
	refrigerant-oil mixture, lubricating properties								
	at high temperatures, material compatibility								
	with steel and copper								

<u>Data sources:</u> Bertinat (1986), Burtscher et al. (2009), Calm (2008), Eisa et al. (1986), Göktun (1995), Helminger et al. (2016), Klein (2009), Kujak (2016), Reißner et al. (2013), Rieberer et al. (2015)

Refrigerants for HTHPs

A Refrigerants selected

for investigation in this study

Туре	Refrigerant	Description	Chemical Formula	T _{crit} [°C]	P _{crit} [bar]	ODP [-]	GWP [-]	SG	NBP [°C]	M [g/mol]	Relative price [-]
CEC	R113	1,1,2-Trichloro-1,2,2-trifluoroethane	CCl ₂ FCCIF ₂	214.0	33.9	0.85	5'820	A1	47.6	187.4	Prohibitod
CFC	R114	1,2-Trichloro-1,1,2,2-tetrafluoroethane	CCIF ₂ CCIF ₂	145.7	32.6	0.58	8'590	A1	3.8	170.9	accoding
	R123	2,2-Dichloro-1,1,1-trifluoroethane	C ₂ HCl ₂ F ₃	183.7	36.6	0.03	79	B1	27.8	152.9	to
	R21	Dichlorofluoromethane	CHCl ₂ F	178.5	51.7	0.04	148	B1	8.9	102.9	Montráal
nere	R142b	1,1-Dichloro-1-fluoroethane	CH ₃ CCl ₂ F	137.1	40.6	0.065	782	A2	-10.0	100.5	Protocol
	R124	1-Chloro-1,2,2,2-tetrafluoroethane	C ₂ HCIF ₄	126.7	37.2	0.03	527	A1	-12.0	136.5	FIOLOCOI
-	R365mfc ^a	1,1,1,3,3-Pentafluorobutane	CF ₃ CH ₂ CF ₂ CH ₃	186.9	32.7	0	804	A2	40.2	148.1	8.9
	SES36 ^b	R365mfc/perfluoro-polyether	R365mfc/PFPE (65/35)	177.6	28.5	0	3'126 ^c	A2	35.6	184.5	10.5
	R245ca	1,1,2,2,3-Pentafluoropropane	CHF ₂ CF ₂ CH ₂ F	174.4	39.3	0	716	n.a	25.1	134.0	n.a.
-	R245fa ^d	1,1,2,2,3-Pentafluoropropane	CHF ₂ CH ₂ CF ₃	154.0	36.5	0	858	B1	14.9	134.0	6.6
HFC	R236fa	1,1,1,3,3,3-Hexafluoropropane	CF ₃ CH ₂ CF ₃	124.9	32.0	0	8'060	A1	-1.4	152.0	10.2
	R152a	1,1-Difluoroethane	CH ₃ CHF ₂	113.3	45.2	0	138	A2	-24.0	66.1	n.a.
	R227ea	1,1,1,2,3,3,3-Heptafluoropropane	CF ₃ CHFCF ₃	101.8	29.3	0	3'350	A1	-15.6	170.0	6.9
	R134a	1,1,1,2-Tetrafluoroethane	CH ₂ FCF ₃	101.1	40.6	0	1'300	A1	-26.1	102.0	1.2
	R410A	R32/R125 (50/50 mixture)	CH ₂ F ₂ /CHF ₂ CF ₃	72.6	49.0	0	2'088	A1	-51.5	72.6	2.9
	R1336mzz(Z) ^e	1,1,1,4,4,4-Hexafluoro-2-butene	$CF_3CH=CHCF_3(Z)$	171.3	29.0	0	2	A1	33.4	164.1	n.a.
<u> </u>	R1234ze(Z)	cis-1,3,3,3-Tetrafluoro-1-propene	$CF_3CH=CHF(Z)$	150.1	35.3	0	<1	A2L ^f	9.8	114.0	n.a.
HFO	R1336mzz(E) ^g	trans-1,1,1,4,4,4,-Hexafluoro-2-butene	$CF_3CH = CHCF_3(E)$	137.7	31.5	0	18	A1	7.5	164.1	n.a.
	R1234ze(E)	trans-1,3,3,3-Tetrafluoro-1-propene	$CF_3CH=CHF(E)$	109.4	36.4	0	<1	A2L	-19.0	114.0	5.6
	R1234yf	2,3,3,3-Tetrafluoro-1-propene	$CF_3CF=CH_2$	94.7	33.8	0	<1	A2L	-29.5	114.0	13.8
	R1233zd(E) ^h	1-chloro-3,3,3-Trifluoro-propene	CF ₃ CH=CHCI(E)	166.5	36.2	0.00034	1	A1	18.0	130.5	6.3
	R1224yd(Z) ⁱ	1-chloro-2,3,3,3-Tetrafluoro-propene	CF ₃ CF=CHCl(Z)	155.5	33.3	0.00012	<1	A1	14.0	148.5	n.a.
	R601	Pentane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	196.6	33.7	0	5	A3	36.1	72.2	4.9
	R600	Butane	CH ₃ CH ₂ CH ₂ CH ₃	152.0	38.0	0	4	A3	-0.5	58.1	1.8
НС	R600a	Isobutane	CH(CH ₃) ₂ CH ₃	134.7	36.3	0	3	A3	-11.8	58.1	1.0
	R290	Propane	CH ₃ CH ₂ CH ₃	96.7	42.5	0	3	A3	-42.1	44.1	1.1
	R1270	Propene	$CH_3CH=CH_2$	91.1	45.6	0	2	A3	-47.6	42.1	1.0
CF6	Novec 649 ^j	Dodecafluoro-2-methyl-3-pentanone	CF ₃ CF ₂ C(O)CF(CF ₃) ₂	168.7	18.8	0	<1	n.a.	49.0	316.0	6.8
Ether	E170	Dimethyl ether	CH ₃ OCH ₃	127.2	53.4	0	1	A3	-24.8	46.1	39.0
	R718	Water	H ₂ O	373.9	220.6	0	0	A1	100.0	18.0	5.6 ^k
Natural	R717	Ammonia	NH ₃	132.3	113.3	0	0	B2L	-33.3	17.0	27
	R744	Carbon dioxide	CO ₂	31.0	73.8	0	1	A1	-78.5	44.0	1.0

CFC = Chlorofluorocarbons, HCFC = Hydrochlorofluorocarbons, HFC = Hydrofluorocarbons, HFO = Hydrofluoroolefins, HCFO = Hydrochlorofluoroolefins HC = Hydrocarbons, T_{crit} = critical temperature, p_{crit} = critical pressure, ODP = Ozone Depletion Potenial (R11=1.0, UNEP, 2017), GWP₁₀₀ = Global Warming Potential (CO₂=1.0, 100 years, EU F-Gas Regulation 517/2014, Myhre et al., 2013), SG = Safety Group (DIN EN 378-1, 2008, ASHRAE 34), NBP = Boiling point at 1.013 bar, M = Molecular weight, Relativer price per kg refrigerant compared to CO₂ of 9 Euro/kg (based on a 10 kg vessel, October 2017), n.a. = price not yet available but close to market, ^aSolkane®365mfc from Solvay, ^bSolkatherm®SES36 from Solvay, ^cLewandowski et al. (2010), ^dR245fa from Linde or Honeywell (Genetron® 245fa).^eOpteon^M MZ from Chemours, ^fFukuda et al.

(2014), ⁹Juhasz (2017), ^hSolstice[®]zd from Honeywell, ⁱAMOLEA[®] 1224yd from AGC Chemicals, ^jNovec[™] 649 from 3M, ^kMolecular biological quality cordin.arpagaus@ntb.ch

Suitable properties of HFO and HCFO refrigerants for HTHPs

Remarks

- ODP basis R11=1.0 (UNEP, 2017)
- GWP100 for 100-year time horizon: basis CO2=1.0, IPCC 5th assessment report from Myhre et al. (2013) and F-Gas regulation No 517/2014 (EU, 2014)
- Safety group (SG) classification according to ASHRAE (2016)
- Approxiamte sales price per kg refrigerant (based on a 10 kg container, prices from PanGas, Climalife, and Solvay, October 2017), n.a. price not yet available but refrigerant is close to market
- ^aOpteon[™] MZ from Chemours, ^bFukuda et al. (2014), ^cSolstice[®]zd from Honeywell (2016), ^dAMOLEA[®] 1224yd from AGC Chemicals (2017), ^eSolkane[®] 365mfc from Solvay, ^fGenetron[®] 245fa from Honeywell cordin.arpagaus@ntb.ch

Possible concept for a HTHP laboratory prototype

Decision criteria:

1) Thermodynamic suitability (T_{crit} > 150°C, allows

subcritical operation, good efficiency at high temperatures)

- 2) Environmental compatibility (GWP <10, ODP = 0, future-proof according to F-Gas regulation)
- **3) Safety** (no or only low flammability)
- A) Natural refrigerants, like R600, R600a and R601 excluded due to flammability (A3), other refrigerants due to lack of information and availability

Single-stage cycle with IHX

Assumptions:

 $VHC = (h_2 - h_3)\rho_1$ $COP = (h_2 - h_3)/(h_2 - h_1)$

- Constant compressor isentropic efficiency of 0.7
- 5 K superheating ($\Delta T_{SH,I}$) at compressor inlet for R1233zd(E), R1234ze(Z), R245fa
- 5 K superheating ($\Delta T_{SH,II}$) at comp. outlet for R1336mzz(Z), R1224yd(Z), R365mfc
- 5 K subcooling $(T_{SC} = 5 K)$, i.e. low heat sink temperature glide
- 5 K minimum temperature difference within the IHX ($\Delta T_{IHX} = T_6 T_4 = 5$ K)
- No parasitic pressure and heat losses $(h_5 = h_4)$

cordin.arpagaus@ntb.ch

EI

SCCER

Simulation results

- Optimum condensation temperatures depending on refrigerant type (about 40 to 60 K below critical temperature)
- > R365mfc provides the highest COP, R245fa the lowest
- R1234ze(Z) offers the highest VHC

Simulation results

> R1336mzz(Z) is closest "drop-in" replacement for R365mfc

> R1224yd(Z), R1234ze(Z) and R1233zd(E) closer to R245fa

Experimental setup

Laboratory scale HTHP

EFFICIENCY OF

HTHP with hydraulic loops for heat source and heat sink

Experimental parameter study – Preliminary test results with R1233zd

Conclusions

- More than 20 industrial HTHPs identified on the market with heat supply temperatures > 90°C. A few HTHPs exceed 120°C (using R245fa or R365mfc)
- COPs range between 1.6 and 5.8 with a temperature lift of 130 to 25 K (40 to 60% 2nd Law efficiency)
- Application potentials in industrial waste heat recovery (e.g. drying & sterilization processes, papermaking, food preparation)
- Several R&D projects on an international level (COPs in the range of 5.7 to 6.5 at 30 K temperature lift, 2.2 to 2.8 at 70 K, max. 160°C)
- Research trend towards testing
 - natural refrigerants (e.g. R718, R744),
 - hydrocarbons (e.g. R600, R601)
 - and synthetic HFOs (e.g. R1336mzz(Z), R1234ze(Z), R1233zd(E), and R1224yd(Z)) with low GWP (< 10)

Conclusions

Theoretical simulations

- Tradeoff between COP and VHC
- R1336mzz(Z) is next drop-in replacement for R365mfc
- R1224yd(Z), R1234ze(Z) and R1233zd(E) are closer to R245fa

Experimental HTHP set-up

- Standard components (single-stage with adjustable IHX for superheating and efficiency increase of +14%)
- Tested with commercially available HCFO R1233zd(E)
- Operation demonstrated at 40 to 80°C heat source and 70 to 150°C heat supply temperatures (e.g. drying processes or steam generation)
- **COP of 2.43** at W60 / W110 (50 K temperature lift)
- +21% COP by increasing heat sink temp. difference from 5 to 30 K
- Future work
 - Testing R1336mzz(Z) and R1224yd(Z)
 - Reduction of thermal losses (better insulation)

Acknowledgement

This research project is part of the Swiss Competence Center for Energy Research SCCER EIP of the Swiss Innovation Agency Innosuisse.

We would like to thank Innosuisse for their support.

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency

Literature - further work on high temperature heat pumps

- Arpagaus C., Bless F., Uhlmann M., Schiffmann J., Bertsch S.S.: Review High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials, Energy, 2018, 152, 985-1010.
- Bertsch S.S, Arpagaus C., Bless F., Weickgenannt A., Schiffmann J.: *Theoretical investigation of a high temperature heat pump using a micro turbo compressor and water as a refrigerant*, 13th IIR-Gustav Lorentzen Conference on Natural Refrigerants, June 18-20, 2018, Valencia, Spain.
- Arpagaus C., Bless F., Schiffmann J., Bertsch S.S.: *Review on high temperature heat pumps market overview and research status*, International Workshop on High Temperature Heat Pumps, Sept 11, 2017, Copenhagen, Denmark.
- Bless F., Arpagaus C., Bertsch S.S., Schiffman J.: Theoretical analysis of steam generation methods - Energy, CO2 emission, and cost analysis, Energy, 2017, 129, 114-121.
- Javed A.; Arpagaus C.; Bertsch S.S.; Schiffmann J., 2016, Small-scale turbocompressors for wide-range operation with large tip-clearances for a two-stage heat pump concept, International Journal of Refrigeration, 69, 285-302.
- Arpagaus C.; Bless, F.; Schiffmann J.; Bertsch S.S.: *Multi-temperature heat pumps: A literature review*, International Journal of Refrigeration, 2016, 69, 437–465.

Thank you for your attention!

HOME / BÜCHER / Hochtemperatur-Wärmepumpen

Rubriken: Kältetechnik / Das Gebäude - Gebäudetechnik, TGA und Facility Management

Contact details:

<u>cordin.arpagaus@ntb.ch</u> +41 81 755 34 94

Interstate University of Applied Sciences of Technology Buchs

University of Applied Sciences of Eastern Switzerland

IES

INSTITUTE FOR ENERGY SYSTEMS

NCC Ost

снициента

