Hochtemperatur Wärmepumpe mit HFO und HCFO Kältemitteln – Systemdesign, Simulation und erste experimentelle Ergebnisse

> <u>C. Arpagaus</u>, M. Prinzing, F. Bless, M. Uhlmann, E. Büchel, S. Frei, R. Kuster, S.S. Bertsch, *NTB Buchs*

J. Schiffmann, EPFL Neuchâtel

IIII NTE

Deutsche Kälte- und Klimatagung 2018 22. November 2018, Aachen

INSTITUT FÜR ENERGIESYSTEME

FHO Fachhochschule Ostschweiz

Inhalt

Einführung in die Thematik

- Systemdesign Laboranlage
- Theoretische Simulation
- Experimentelle Testergebnisse

Hochtemperatur Wärmepumpen

Klassifizierung

Fokus auf Kompressionswärmepumpen

Nellissen und Wolf (2015)

Entwicklung der Temperaturniveaus für Kompressionswärmepumpen

VHTHP: Höchsttemperatur Wärmepumpe (> 100°C) HTWP: Hochtemperatur Wärmepumpe (80 bis 100°C) WP: konventionelle Wärmepumpe (bis etwa 80°C)

Bobelin et al. (2012), IEA (2014), Jakobs und Laue (2015), Peureux et al. (2012, 2014)

Prozesswärme

Industrieller Energieverbrauch der Schweiz (2015) nach Verwendungszweck

ΙТВ

für Technik Buchs FHO Fachhochschule Ostschweiz

nterstaatliche Hochschule

Marktpotenzial für Hochtemperatur Wärmepumpen

Potenzial für HTWP in verschiedenen Industriesektoren aufgeteilt nach Temperaturbereichen der Prozesswärme

Theoretisches Potenzial für HTWP in der Schweiz

Technisches Potenzial in Europa, das mit industriellen Wärmepumpen erschlossen werden kann

NTB

nterstaatliche Hochschule

für Technik Buchs

BFE (2016), Pulfer und Spirig (2015)

Basiert auf Eurostat-Daten aus 2012 von 33 EU-Ländern, Nellissen und Wolf (2015)

Industrielle Prozesse

Typische Temperaturniveaus industrieller Prozesse mit überlagertem Technologie Reifegrad von Wärmepumpen

						Te	emp	era	tur													Tem	ipe	ratu	r			
Sektor	Prozess	20) 40) 6	08	30 1 I	100	120) 14	0 1	60	180 2	00	[°C]	Sektor	Prozess	2	0 4	40	60	80	10	0 1	20 1	140	160	180 2	00 E
Papier	Trocknung													90 -240	Kunststoffe	Spritzgiessen			+		+					d T		90
	Aufkochen													110 - 180		Pellets Trocknung	-							-		-	-	40
	Bleichen													40 - 150	ranototono	Vorheizung	-				-	-			┍			- 5
	Entfärbung													50 - 70	50 - 70	Oberflächenhehandlun					+				+	+-		
	Trocknung													40 - 250	Maschinenbau	Doiniana	'y				\vdash				+	+-		
	Verdampfung													40 - 170		Reinigng	-									<u> </u>	+	
	Pasteurisierung													60 - 150		Farbung	_				4					-	—	
	Sterilizierung													100 - 140	Textilien	Irocknung									_	—	—	60
ebensmittel &	Sieden													70 - 120		Waschen										\perp		40
Getränke	Destillation													40 - 100		Bleichen												40
	Brühen													50 - 90	Holz	Verklebung												120
	Aufkonzentration													60 - 80		Pressen												120
	Temperierung													40 - 80		Trocknung												40
	Räuchern													20 - 80		Dampfbehandlung												70
	Destillation													100 - 300		Kochen												8
	Kompression													110 - 170		Färben												5
Chamikalian	Thermoforming													130 - 160		Beizen												4
Chernikalien	Aufkonzentration													120 - 140	Verschiedene Sektoren	Warmwasser												20
	Sieden													80 - 110		Vorheizung										1	-	20
	Bioreaktionen													20 - 60		Waschen/Reinigen									+	-	-	3
Automobil	Formpressen													70 - 130		Raumheizung						-			+	-	_	
Metalle	Trocknung													60 - 200	Technologie Re	eifegrad von Wärmepu	mpe	en:				L						
	Beizen												\Box	20 - 100	konventionalle Wärmenumpen $< 80^{\circ}$ C, etabliert in der Industrie													
	Entfettung												Г	20 - 100	kommerziell erhältliche HTWP 80 - 100°C, Schlüsseltechnologie													
	Galvanisierung												Г	30 - 90														
	Phosphatierung												Τ	30 - 90	Forschung im Labormaßstab, Funktionsmodelle, Proof of Concept, HTWP > 14													
	Chromatierung												Г	20 - 80								// ~ 140						
	Spülung													40 - 70														

Datenguellen: Brunner et al. (2007), Hartl et al. (2015), IEA (2014), Kalogirou (2003), Lambauer et al. (2012), Lauterbach et al. (2012), Noack (2016), Ochsner (2015), Rieberer et al. (2015), Watanabe (2013), Weiss (2007, 2005), Wolf et al. (2014)

FHO Fachhochschule Ostschweiz

Abwärmenutzung

Prinzip der innerbetrieblichen Abwärmenutzung mittels industrieller Wärmepumpen

Beispiele industrielle Prozesse

HTWP mit Vorlauftemperaturen von 100 bis 150°C sind geeignet zur Wärmerückgewinnung in verschiedenen industriellen Prozessen

Interstaatliche Hochschule für Technik Buchs

FHO Fachhochschule Ostschweiz

Marktübersicht an Hochtemperatur Wärmepumpen

Auswahl an kommerziellen industriellen HTWP mit Vorlauftemperaturen über 90 °C

Marktübersicht – Effizienz (COP_H) und Gütegrad

COPs verschiedener industrieller HTWP Produkte in Funktion vom Temperaturhub

 NTB
 Interstaatliche Hochschule für Technik Buchs
 FHO Fachhochschule Ostschweiz

 Kobelco SGH 120/165 Kobelco HEM-HR90 OViking HeatBooster S4 R1336mzz(Z) Ochsner IWWDSS R2R3b Ochsner IWWDS ER3b ♦ Ochsner IWWDS ER3c4 ♦ Hybrid Heat Pump ▲ Friotherm Unitop 22/22 ∆ Combitherm GEA Grasso FX P Star Refrigeration Neatpump ■ SABROE HeatPAC HPX Viessmann Vitocal 350-HT Pro △ Mitsubishi ETW-L

Fit-Kurve (45% Gütegrad): COP_H = 68.455.∆T_{Hub}-^{0.76}, R²=0.78

Quelle: Literaturdaten zusammengefasst in Arpagaus et al. (2018)

- 1) Entwicklung und Erprobung neuer synthetischer Kältemittel mit niedrigem GWP. Einsatz natürlicher Kältemittel wie Kohlenwasserstoffe (R600, R601), CO₂ oder Wasser
- 2) Steigerung der Effizienz (COP ↑) von Wärmepumpen (z. B. durch mehrstufige Kreislaufe, mit ölfreien Kompressoren)
- Erweiterung der Grenzen der Quellen- und Vorlauftemperaturen (T_{Senke} ↑) auf höhere Werte
- 4) Optimierung und Entwicklung von Wärmepumpen-Systemen mit neuen Regelungsstrategien für höhere Temperaturen
- 5) Entwicklung temperaturbeständiger Komponenten (z.B. Ventile, Kompressoren)
- 6) Scale-up von Funktionsmodellen in den industriellen Maßstab (Demonstrationsprojekte)

Kältemittel

Entwicklung synthetischer Kältemittel (4. Generation)

Kältemittel – Thermodynamische Eigenschaften

Geeignete HFO und HCFO Kältemittel für HTWP

FHO Fachhochschule Ostschweiz

Тур	Kältemittel	Formel	T _{krit} in °C	_{rrit} p _{crit} Sd °C in bar in [°]		ODP	GWP ₁₀₀	SG	
ЧЕО	R1336mzz(Z) ^a	$CF_3CH=CHCF_3(Z)$	171.3	29.0	33.4	0	2	A1	
	R1234ze(Z) ^b	$CF_3CH=CHF(Z)$	150.1	35.3	9.8	0	<1	1 A2L	
HCEO	R1233zd(E) ^c	CF ₃ CH=CHCI(E)	166.5	36.2	18.4	0.00034	1	A1	
	R1224yd(Z) ^d	$CF_3CF=CHCI(Z)$	155.5	33.3	14.0	0.00012	<1	A1	
HFKW	R365mfc ^e	CF ₃ CH ₂ CF ₂ CH ₃	186.9	32.7	40.2	0	804	A2	
(Vergleich)	R245fa ^f	CHF ₂ CH ₂ CF ₃	154.0	36.5	15.1	0	858	B1	
R1336	HFO mzz(Z)	R1234ze(Z)	B R1	233zd	HC (E)	FU R	1224yd(2	z)	
R1336mzz(Z) (74.7%)	4A	514A: eotropes Gemisch rit = 178.4°C rit=29.3 bar dp.=34.0°C DP=0.00006 WP<2 1 0 von Chemours	Bemer ODF GWI IPCO No 5 Sich aOpt CSol: AGO ^f Ger	kungen: P Basis R1 ² P ₁₀₀ mit 10 C 5 th (Myhr 517/2014 (I erheitsgrup ceon™ MZ stice®zd vo C Chemical netron® 24	1=1.0 (UI 0-Jahre 2 e et al., 2 EU, 2014 ope (SG) von Che on Honey s, ^e Solka 5fa von F	NEP, 2017) Zeithorizont: I 2013) und F-C) gemäss (AS mours, ^b Fuku well, ^d AMOL ane®365mfc v Honeywell	Basis CO ₂ =1 Base-Verordr HRAE, 2016 Ida et al. (20 EA®1224yd /on Solvay,	.0, iung) 14), von	

22. November 2018 Juhasz & Kontomaris (2018), Kujak (2018)

Kältemittel Stoffdaten

Thermodynamische Eigenschaften ausgewählter Kältemittel

Log(p)-h Diagramm

Systemdesign Konzept für eine HTWP Laboranlage

Entscheidungskriterien:

- Thermodynamische Eignung (T_{Krit} > 150°C, ermöglicht unterkritischen Betrieb, guter Wirkungsgrad bei hohen Temperaturen)
- Umweltverträglichkeit (GWP <10, ODP = 0, zukunftssicher nach F-Gase-Verordnung)
- 3) Sicherheit (keine oder nur geringe Entflammbarkeit)
- I) Natürliche Kältemittel wie R600, R600a und R601 aufgrund der Entflammbarkeit (A3) ausgeschlossen, H₂O benötigt anderen Kreislauftyp (z.B. Brüdenverdichtung)

Berechnungen in EES (Engineering Equation Solver) Software

Theoretischer Vergleich ausgewählter Kältemittel im einstufigen Kreislauf mit IHX bei 70 K Hub

22. November 2018

cordin.arpagaus@ntb.ch

NTB

Interstaatliche Hochschule

für Technik Buchs FHO Fachhochschule Ostschweiz

Systemdesign

1-stufiger Kreislauf mit internem Wärmeübertrager (IHX) und regulierbarem 3-Wege-Ventil

Experimentelle Untersuchungen:

- Aufbau einer HTWP im Labormaßstab mit 10 kW Heizleistung
- Vorlauftemperaturen von 80 bis 150 °C
- Bestimmung der Betriebskennfelder mit R1233zd(E) und R1336mzz(Z)

ΙТВ

Interstaatliche Hochschule

für Technik Buchs

Systemdesign

Referenzbedingungen und Variationsbereich

Spreizung $\Delta T_{senke} = 5$ bis 30 K

Spreizung $\Delta T_{Quelle} = 3 \text{ K}$ (fix)

	Referenz- punkt (Ref)	Variations- bereich
T _{Senke,Aus}	110 ± 1°C	70 bis 150°C
T _{Quelle,Ein}	60 ± 1°C	40 bis 80°C
ΔT_Hub	50 K	30 bis 70 K
ΔT_{Senke}	5.0 ± 0.1 K	5 bis 30 K
ΔT_{Quelle}	3.0 ± 0.1 K	—
f _{Komp}	50 Hz	—
IHX		
(Öffnungsgrad	0%	0 bis 100%
3-Wege-Ventil)		

Überhitzung nach Verdampfer: $\Delta T_{Ub} = T_6 - T(p_{Evap}) = 5 K$ IHX erzeugt zusätzliche Überhitzung

Systemdesign NTB **Prinzipschema** Interstaatliche Hochschule für Technik Buchs Wasser FHO Fachhochschule Ostschweiz Kühler V_{Senke} $COP_{H} = \frac{\dot{m}_{H_{2}O} \cdot c_{p,H_{2}O} \cdot \Delta T_{Senke}}{\dot{T}_{Senke}}$ + P_{Komp} Wärme Senke ÖI (T_{Ein} ' Aus Abscheider 3 Sammler 2 + p₃ Kondensator T₂ 3-Wege **p**₂ Kompressor Ventil P_{Komp} T₄ 4 **Expansions**p₁ ventil Evap **T**₆ T₁ p₅ 5 6 VQuelle IHX T_{Ein} ' ΔT Wärme Quelle Sauggas ----Akkumulator

Ρ

Systemdesign

Experimenteller Aufbau und Sensoren

Sensor	en (Messgenauigkeit)
p ₁₆	bis 50 bar, max. 120°C, max. 1,5% Endwert
T ₁₆	Thermoelemente Typ K (Kl. 1) \pm 1,5 K (abs)
ΔT	Thermoelemente \pm 0,1 K (diff)
D	Leistungsmessung 0 bis 15 kW
⊂ Komp	0,2% Messbereich + 0,1% Messwert
V _{senke}	0,3 bis 25 L/min (max. 180°C), ± 0,05 %
V _{Quelle}	5% Genauigkeit, 1% Wiederholgenauigkeit

Systemdesign Experimenteller Aufbau und Komponenten

Kupferleitungen 3/8" und 7/8"

Systemdesign Experimenteller Aufbau isoliert

FHO Fachhochschule Ostschweiz

Wärmepumpe mit Wärmequelle und -senke

FHO Fachhochschule Ostschweiz

Systemdesign

Experimentelle Resultate mit Kältemittel R1233zd(E)

Betriebskennfeld und Effizienzerhöhung durch IHX

Parameterstudie mit Kältemittel R1233zd(E)

Einfluss IHX und Effizienzsteigerung durch Spreizung

Interstaatliche Hochschule für Technik Buchs

Ol-Degradierung ist gering – Neutralisationszahl als Maß POE Öl nach etwa 100 Betriebsstunden mit R1233zd(E)

Polyolesteröle (POE) Reines (frisches) 300 POE ÖI 250 Kinematische Viskosität in cSt -B320SH (SE 170) 200 -BSE170 -BSE100 150 BSE55 -BSE32 100 50 n 20 80 100 120 0 40 60 Temperatur in °C **SE 170**

Kinematische Viskosität (gemäss DIN EN ISO 3104): bei 40 °C 173 mm²/s bei 100 °C 17,6 mm²/s

(*gemessen nach DIN 51558-1)

RENISO TRITON SE 170 Synthetisches Kältemaschinenöl auf Polyolester-Basis (POE) für HFKW/FKW- und HFO- bzw. HFO/HFKW Kältemittel

22. November 2018

Fazit (1/2)

Schlussfolgerungen

- NTB
 Interstaatliche Hochschule für Technik Buchs
 FHO Fachhochschule Ostschweiz
- Grosse Anwendungspotentiale für HTWP in der Nahrungsmittel-, Papier- und Chemieindustrie
 - z.B. Prozesse wie Trocknung, Sterilisation, Verdampfung, und Wärmerückgewinnung)
 - > 26 HTWP (Kompressionswärmepumpen) von 15 Herstellern identifiziert mit Vorlauftemperaturen > 90°C (einige > 120°C, max. 165°C)
 - COP_H = 68,455· Δ T_{Hub}-^{0,76} (H: Heizen, Δ T_{Hub} von Quelle zu Senke in K, bei 45% Gütegrad)

Forschungsbedarf:

- Entwicklung und Erprobung neuer synthetischer HFO Kältemittel mit GWP < 10
- Trend zu natürlichen Kältemitteln (R600, R601, CO₂, H₂O)
- Steigerung der Effizienz (z. B. durch mehrstufige Kreislaufe, mit ölfreien Kompressoren),
- Neuen Regelungsstrategien und Scale-up
- Theoretischer Vergleich verschiedener HFO und HCFO Kältemittel
 - Kompromiss zwischen COP (Effizienz) und VHC (volumetrische Wärmeleistung)
 - 1336mzz(Z) ist der nächste «Drop-in» Ersatz für R365mfc
- R1224yd(Z), R1234ze(Z) und R1233zd(E) liegen n\u00e4her an R245fa

Fazit (2/2) Schlussfolgerungen

Experimental HTHP Laboranlage

- Aufbau der Laboranlage mit Standard Komponenten
- 1-stufiger Kreislauf mit einstellbarem IHX (interner Wärmeübertrager) für die Regelung (mittels 3-Wege Ventil) der Überhitzung und Effizienzsteigerung von +15%
- Handelsübliches HCFO R1233zd(E) getestet (Betriebskennfeld)
- Betrieb mit 40 bis 80°C Wärmequelle und 70 bis 150°C Wärmesenke nachgewiesen
- COP_H im Referenzpunkt W60 / W110 (50 K Temperaturhub) liegt bei 3,1 (mit IHX)
- COP Steigerung von +15% durch Erhöhung der Spreizung (Senke) von 5 auf 30 K (z.B. Dampferzeugung oder Trocknungsprozesse)
 Betriebspunkte
- Zukünftige Arbeiten
 - Experimente mit HFO R1336mzz(Z) und HCFO R1224yd(Z)

T _Q /T _S (ΔT)	СОРн
80/150 (70)	2.1
80/130 (50)	3.1
80/110 (30)	4.2
60/90 (30)	4.7
40/70 (30)	4.1

mit R1233zd(E)

Literatur

Referenzen

- Arpagaus C.: <u>Hochtemperatur-Wärmepumpen: Marktübersicht, Stand der Technik und</u> <u>Anwendungspotenziale</u>, VDE Verlag, Berlin, 2018, 140 Seiten, ISBN 978-3-8007-4550-0
 - Arpagaus C., Bless F., Uhlmann M., Schiffmann J., Bertsch S.S.: <u>Review High temperature</u> <u>heat pumps: Market overview, state of the art, research Status, refrigerants, and application</u> <u>potentials</u>, Energy, 2018, 152, 985-1010.
 - Bertsch S.S, Arpagaus C., Bless F., Weickgenannt A., Schiffmann J.: <u>Theoretical investigation</u> of a high temperature heat pump using a micro turbo compressor and water as a refrigerant, 13th IIR-Gustav Lorentzen Conference on Natural Refrigerants, June 18-20, 2018, Valencia, Spain.
 - Arpagaus C., Bless F., Schiffmann J., Bertsch S.S.: <u>Hochtemperatur Wärmepumpen:</u> <u>Marktübersicht und Stand der Forschung</u>, DKV-Tagung, 23. Nov. 2017, Bremen (<u>Kurzfassung</u>).
 - Arpagaus C., Bless F., Schiffmann J., Bertsch S.S.: <u>Review on high temperature heat pumps -</u> <u>market overview and research status</u>, <u>International Workshop on High Temperature Heat</u> <u>Pumps</u>, Sept 11, 2017, Copenhagen, Denmark.
 - Bless F., Arpagaus C., Bertsch S.S., Schiffman J.: <u>Theoretical analysis of steam generation</u> <u>methods - Energy, CO2 emission, and cost analysis</u>, Energy, 2017, 129, 114-121.
 - Arpagaus C.: <u>Hochtemperatur Wärmepumpen: Literaturstudie zum Stand der Technik, der Forschung, der Anwendungspotentiale und der Kältemittel</u>, NTB Buchs, im Auftrag des Fördervereins Institut für Energiesysteme IES, 10.3.2017, <u>Link zur Prezi Präsentation</u>.
 - Arpagaus C.; Bless, F.; Schiffmann J.; Bertsch S.S.: <u>Multi-temperature heat pumps: A literature</u> <u>review</u>, International Journal of Refrigeration, 2016, 69, 437–465.

22. November 2018

Dank

📕 🛸 NTB

Interstate University of Applied Sciences of Technology Buchs

University of Applied Sciences of Eastern Switzerland

IES

INSTITUT FÜR ENERGIESYSTEME

Manuel Prinzing Dr. Frédéric Bless Michael Uhlmann Elias Büchel Stefan Frei Ralph Kuster Prof. Stefan S. Bertsch

Prof. Jürg Schiffmann

Finanzieller Support

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Innosuisse – Schweizerische Agentur für Innovationsförderung

Vielen Dank für die Aufmerksamkeit

NTB Interstaatliche Hochschule für Technik Buchs, Institut für Energiesysteme IES, Schweiz

Dr. Cordin Arpagaus

cordin.arpagaus@ntb.ch Tel. +41 81 377 94 34 www.ntb.ch/en/team/cordin-arpagaus

IIII NTB

Interstaatliche Hochschule für Technik Buchs Deutsche Kälte- und Klimatagung 2018 22. November 2018, Aachen

INSTITUT FÜR ENERGIESYSTEME

FHO Fachhochschule Ostschweiz