

Experimental results of HFO/HCFO refrigerants in a laboratory scale HTHP with up to 150 °C supply temperature

C. Arpagaus, S.S. Bertsch

NTB Buchs

Interstate University of Applied Sciences of Technology Buchs

University of Applied Sciences of Eastern Switzerland

2nd Conference on High Temperature Heat Pumps (HTHP) Copenhagen, Denmark September 9, 2019

INSTITUTE FOR ENERGY SYSTEMS

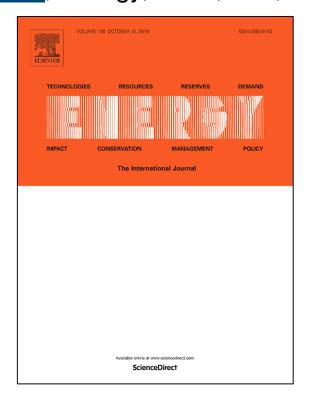
Content

- Introduction to high temperature heat pumps (HTHP)
- Suitable HFOs and HCFOs for HTHPs
- System design of the laboratory scale HTHP at NTB Buchs
- Experimental results with R1336mzz(Z), R1233zd(E) and R1224yd(Z)
- Conclusions

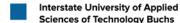
Introduction to high temperature heat pumps (HTHP)

Publications

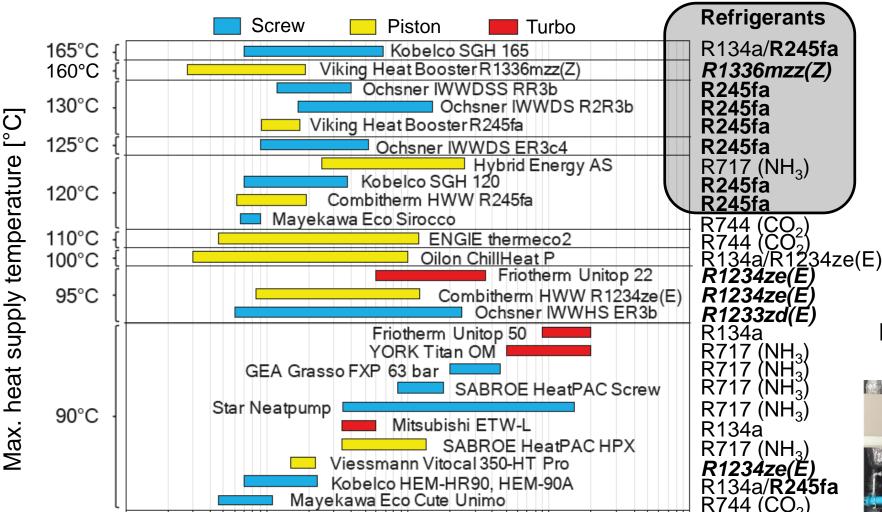
Interstate University of Applied Sciences of Technology Buchs University of Applied Sciences


of Eastern Switzerland

Review Papers


Arpagaus C., Bless F., Schiffmann J., Bertsch S.S.: <u>Multi-temperature heat</u> <u>pumps: A literature review</u>, International Journal of Refrigeration, 2016, 69, 437–465.

Arpagaus C., Bless F., Uhlmann M., Schiffmann J., Bertsch S.S.: Review - High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials, Energy, 2018, 152, 985-1010



University of Applied Sciences of Eastern Switzerland

R245fa is predominantly used in industrial HTHP ... but has a high GWP of 858

10000

1000

Heating capacity [kW]

HeatBooster S4 (Viking Heating Engines AS)

Kobelco SGH 120/165 (Steam Grow HP)

100

10

Arpagaus et al. (2018)

100000

Interstate University of Applied Sciences of Technology Buchs University of Applied Sciences

Research gaps in High Temperature Heat Pumps

- Application of natural refrigerants, such as hydrocarbons (R600, R601), CO₂ or water
- Extending heat source/sink to higher temperatures
- Improving heat pump efficiency (COP)
 (e.g. by multi-stage cycles, oil-free compressors)
- Development of temperature-resistant components (e.g. valves, compressors)
- New control strategies for higher temperatures
- Scale-up of functional models to industrial scale
- Testing of new environmentally friendly synthetic refrigerants for HTHPs (e.g. HFOs and HCFOs)

Suitable HFOs and HCFOs for HTHPs

University of Applied Sciences

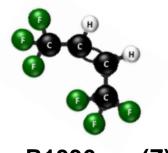
The 4th generation of synthetic low GWP refrigerants

HCFC

(R123)

for chiller, ORC, and HTHP applications

Regulation

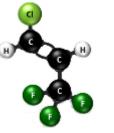

(2037/2000)

Ozone layer

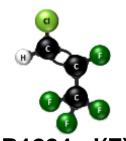
depletion

Paris Agreement (2015)**EU F-Gas Regulation**

HFO (R1336mzz(Z))**HCFO** (517/2014)(R1233zd(E),Cost **Kyoto Protocol** R1224yd(Z)(1997)increase


R1336mzz(Z)

Criteria:


Kigali Amendment

(2019)

- low GWP
- short atm. lifetime
- zero/low ODP
- low flammability
- high efficiency
- high T_{crit}

R1233zd(E)

R1224yd(Z)

CFC: fully halogenated chlorofluorocarbons HCFC: partially halogenated chlorofluorocarbons

HFC

(R245fa)

Global warming

geeenhouse gases

HFC: hydrofluorocarbons HFO: hydrofluoroolefins

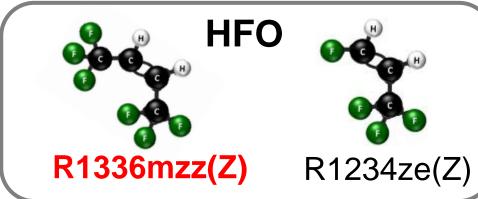
HCFO: hydrochlorofluoroolefins

Montréal Protocol

(1987)

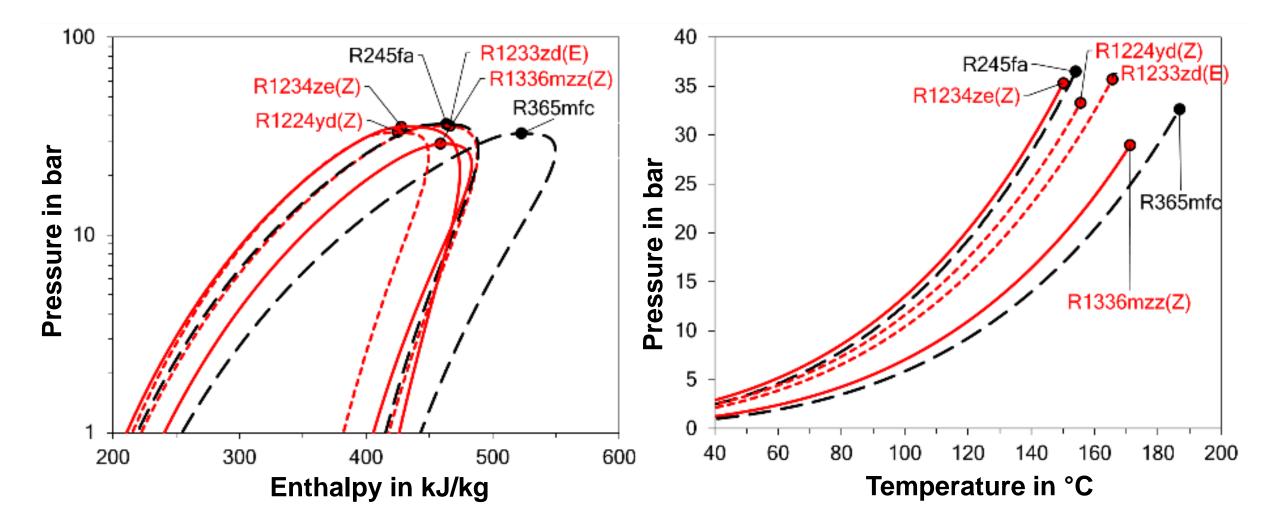
CFC

(R113)


Properties of suitable HFO and HCFO refrigerants for HTHPs

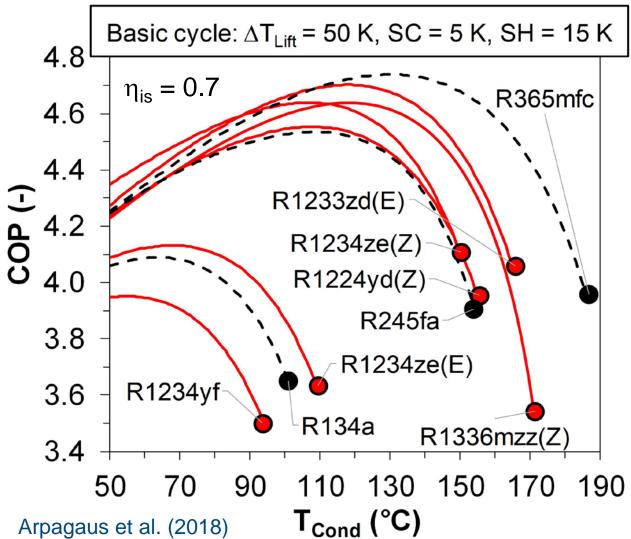
University of Applied Sciences of Eastern Switzerland

	Refrigerant	Brand (manufacturer)	T _{crit} [°C]	p _{crit} [bar]	ODP [-]	GWP ₁₀₀ [-]	Lifetime [days]	SG	NBP [°C]
	R1336mzz(Z)	Opteon™ MZ (Chemours)	171.3	29.0	0	2 a	22 ^a	A1	33.4
	R1234ze(Z)b	Not yet available	150.1	35.3	0	<1 ^a	10 ^a , 18 ^b	A2L	9.8
>	R1233zd(E)	Solstice®zd (Honeywell) Forane®HTS 1233zd (ARKEMA)	165.6	35.7	0.00034 ^d , 0.00030 ^e	1 ^{a,} <5 ^e	~14 ^f ,26 ^a , 36 ^e , 40.4 ^d	A1	18.0
	R1224yd(Z)	AMOLEA®1224yd (AGC Chemicals)	155.5	33.3	0.00023c	0.88 ^c	20 ^c	A1	14.0
	R365mfc	Solkane®365mfc (Solvay)	186.9	32.7	0	804 ^a	8.7 years ^a	A2	40.2
	R245fa	Genetron® 245fa (Honeywell)	154.0	36.5	0	858a	7.7 years ^a	B1	14.9


References:

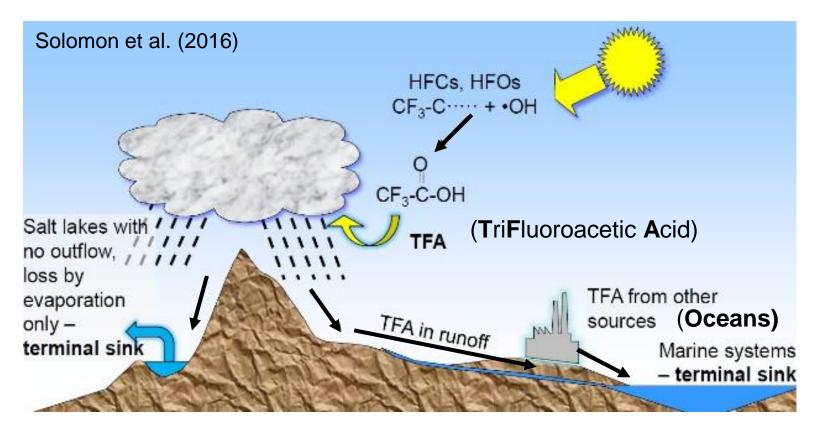
T_{crit} and p_{crit} (EES F-Chart Software, V10.643, 2019), ODP basis R11=1.0 (UNEP, 2017), GWP₁₀₀ (100-year time horizon, CO₂=1.0), SG: Safety group classification (ASHRAE 34, 2016), ^aMyhre et al. (2013, IPCC 5th assessment report), ^bFukuda et al. (2014), ^cTokuhashi et al. (2018), ^dPatten and Wuebbles (2010), ^eSulbaek Andersen et al. (2018) (3D global model), ^fAndersen et al. (2015)

Interstate University of Applied Sciences of Technology Buchs University of Applied Sciences


of Eastern Switzerland

T-s, p-T diagrams of selected HFO and HCFO refrigerants

Interstate University of Applied Sciences of Technology Buchs University of Applied Sciences



- Simulated COP rise to an optimum and decrease with the narrowing of the 2-phase region up to T_{crit}
- Optimal COP at about 30 K below the critical temperature
- R365mfc offers highest COP, followed by R1233zd(E) and R1336mzz(Z)
- R1234ze(Z) and R1224yd(Z) comparable to R245fa
- R1234yf and R1234ze(E) similar to R134a

Discussion on TFA from HFCs and HFOs – environmental impact

Interstate University of Applied Sciences of Technology Buchs University of Applied Sciences

Environmental fate of TFA (trifluoroacetic acid, CF₃C(O)OH)

- 268 million tons TFA are present in the oceans, i.e. nonanthropogenic
- 200 ng/L average TFA concentration in oceans (Frank et al., 2002)

Upper range scenario:

Total TFA yield from 1990 up to 2050 = 20.625 million tons TFA (Solomon et al., 2016)

: 1.34 x 10²¹ L oceans water

Negligible risk for aquatic organisms and human health

Total additional contribution of TFA form HFCs and HFOs to the oceans is 15.3 ng/L* or <7.5% of the naturally present TFA

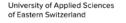
Atmospheric degradation products of HFOs and molar yields of TFA formation (Trifluoroacetic acid, CF₃C(O)OH)

	Refrigerant	Formula	Final degradation products	Molar yields of TFA CF ₃ C(O)OH		
	R1234yf	CF ₃ -CF=CH ₂	CF ₃ C(O)OH, CO ₂ , HF	100%		
HFO	R1234ze(E)	E-CF ₃ -CH=CHF	CO ₂ , HC(O)OH, HF	<10%, 0%		
	R1336mzz(Z)	Z-CF ₃ -CH=CHCF ₃	CO ₂ , HF	<20 % ^a		
	R1233zd(E)	E-CF ₃ -CH=CHCI	CO ₂ , HF, HCI	~ 2% ^b		
HCFO	R1224yd(Z)	224yd(Z) Z-CF ₃ -CF=CHCI	similar structure like R1234yf degrading			
	1(122+yu(2) 2-01 ₃ -0	2-01 3-01 -01101	to CF₃C(O)F and hyd	rolyzing to TFA		
HFC	R365mfc	CF ₃ -CH ₂ -CF ₂ -CH ₃	CO ₂ , HF	<10%		
111 C	R245fa	CHF ₂ -CH ₂ -CF ₃	CO ₂ , HF	<10%		

TFA formation yield depends on HFO refrigerant

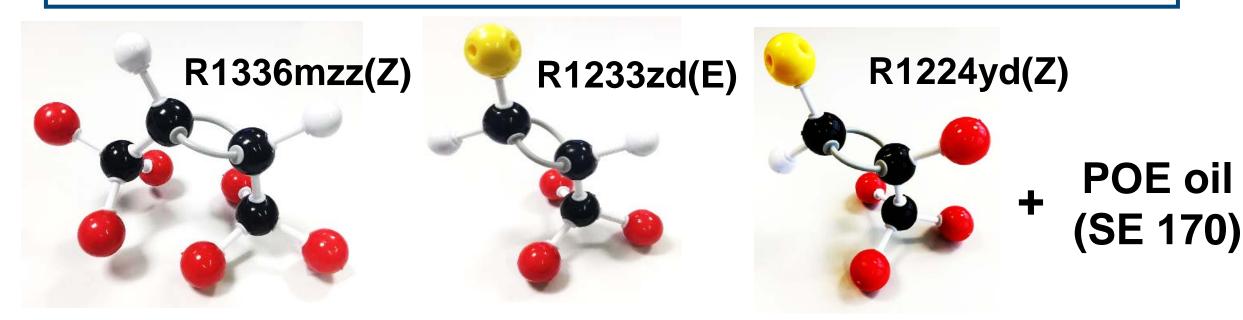
Risk of TFA formation for R1336mzz(Z) and R1233zd(E) is considered to be close to negligible

Products:


CF₃C(O)OH trifluoroacetic acid (TFA)
HC(O)OH formic acid
CO₂ carbon dioxide
HCI hydrochloric acid
HF hydrofluoric acid

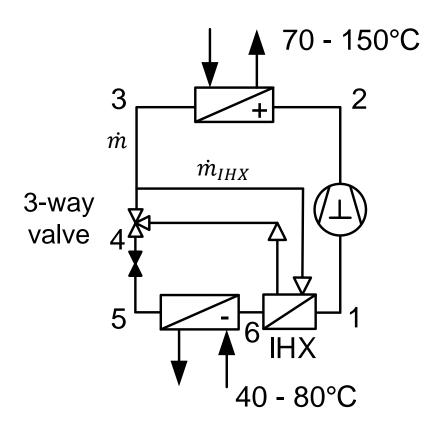
References:

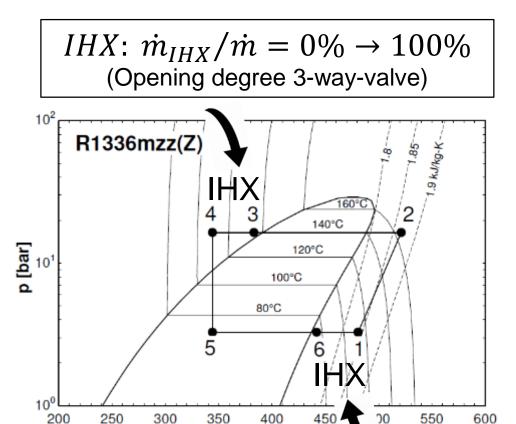
Norwegian Environment Agency (2017), WMO (2018), Wallington et al. (2014), Juhasz & Kontomaris (2018), EFCTC (2019), ^aHenne et. al. (2012), ^bSulbaek Andersen et al. (2008, 2012, 2018), Inoue et al. (2008), ECETOC (2004), Chen et al. (1997)


Interstate University of Applied Sciences of Technology Buchs

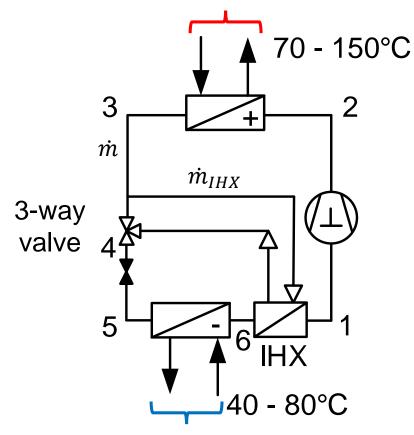
Goals of this study

■ Performance evaluation of R1336mzz(Z) (OpteonTMMZ, Chemours), R1233zd(E) (Solstice®zd, Honeywell), and R1224yd(Z) (AMOLEA®1224yd, AGC Chemicals) in a laboratory HTHP (drop-in test).




System design of the laboratory scale HTHP at NTB Buchs

1-stage cycle with internal heat exchanger (IHX) and adjustable 3-way valve



h [kJ/kg]

Reference conditions and variation range (water/water heat pump)

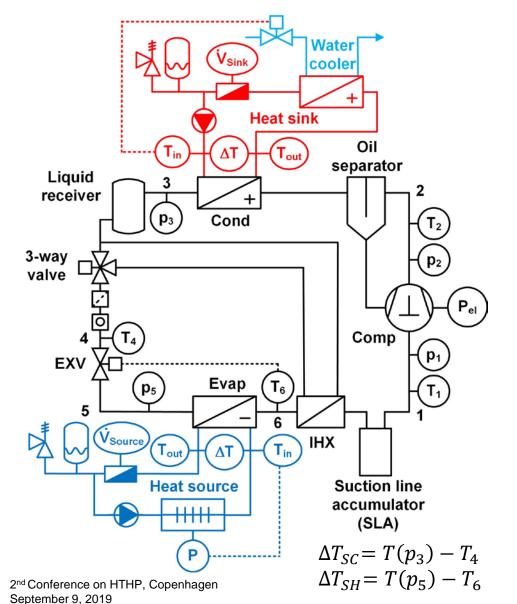
$\Delta T_{Sink} = 5 \text{ K (Ref) to } 25 \text{ K (Temperature glide)}$

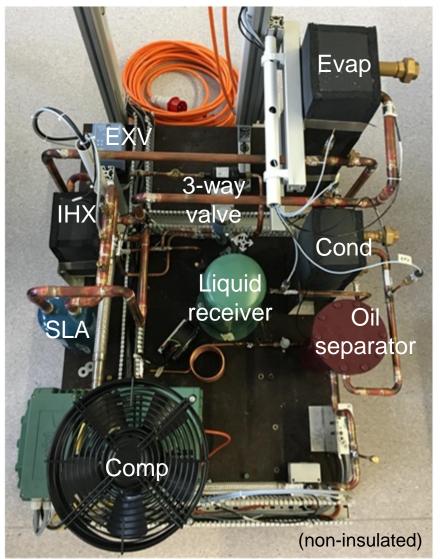
 $\Delta T_{\text{Source}} = 3 \text{ K (constant)}$

	Reference point (Ref)	Variation range
T _{Sink,out}	110 ± 1°C	70 to 150°C
T _{Source,in}	60 ± 1°C	40 to 80°C
ΔT_{Lift}	50 K	30 to 70 K
ΔT_{Sink}	$5.0 \pm 0.1 \text{ K}$	5 to 25 K
∆T _{Source}	$3.0 \pm 0.1 \text{ K}$	constant
f Komp	50 Hz	constant
IHX (Opening angle of 3-way-valve)	100%	0 to 100%
$IHX: \dot{m}_{II}$	$_{HX}/\dot{m}=0\%$	→ 100%

Superheating after evaporator:

$$\Delta T_{SH} = T_6 - T(p_{Evap}) = 5 \text{ K}$$

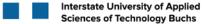

IHX generates additional superheating


System design – laboratory scale HTHP at NTB Buchs

Interstate University of Applied Sciences of Technology Buchs

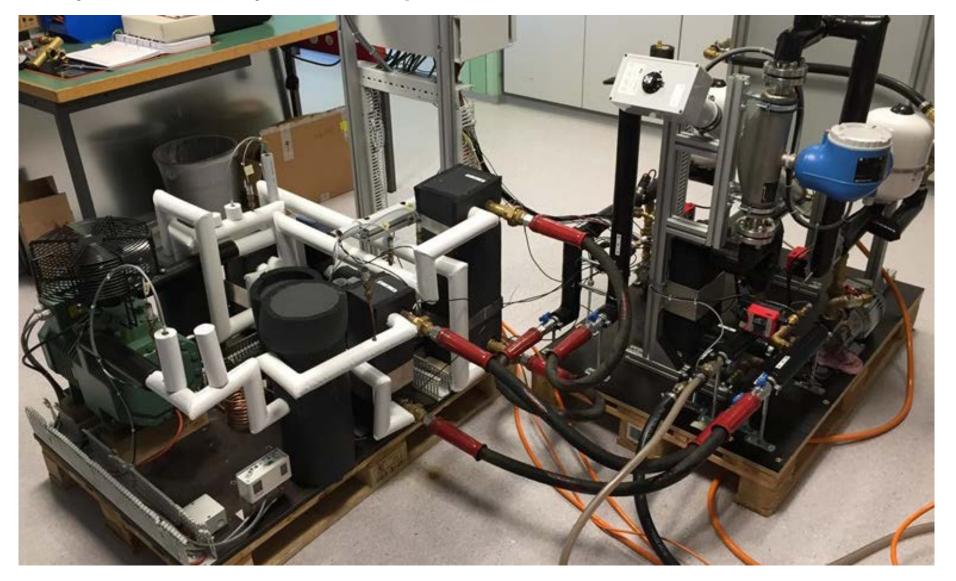
University of Applied Sciences of Eastern Switzerland

Experimental set-up and schematics of the laboratory HTHP



POE oil SE 170 kinematic viscosity at 40 °C: 173 cSt at 100 °C: 17,6 cSt

Variable-speed semi-hermetic piston compressor Bitzer, 2DES-3Y New Ecoline


Motor switch-off temperature ~110 °C

University of Applied Sciences of Eastern Switzerland

Laboratory HTHP with hydraulic loops for heat source and sink

of Eastern Switzerland

Sensors and measurement uncertainties

Measured parameters	Senso	or type	Uncertainities
Pressures	p_{16}	Piezoelectric, 0 to 50 bar, max. 120°C	max. 1.5% of full scale reading
Temperatures	T_{16}	Thermocouples, type K, class 1	± 1.5 K
Heat sink temp difference	ΔT_{Sink}	Thermocouples, type K, class 1	± 0.1 K
Compressor power	P_{Comp}	Power transmitter, 0 to 15 kW	0.2 % of measuring range + 0.1 % measured value
Heat sink mass flow (water)	\dot{m}_{H_2O}	Coriolis, 0 to 1'300 kg/h, max. 180 °C	± 0.05 %

$$COP = \frac{\dot{Q}_{Sink}}{P_{Comp}} = \frac{\dot{m}_{H_2O} \cdot c_{p,H_2O}(T) \cdot \Delta T_{Sink}}{P_{Comp}}$$

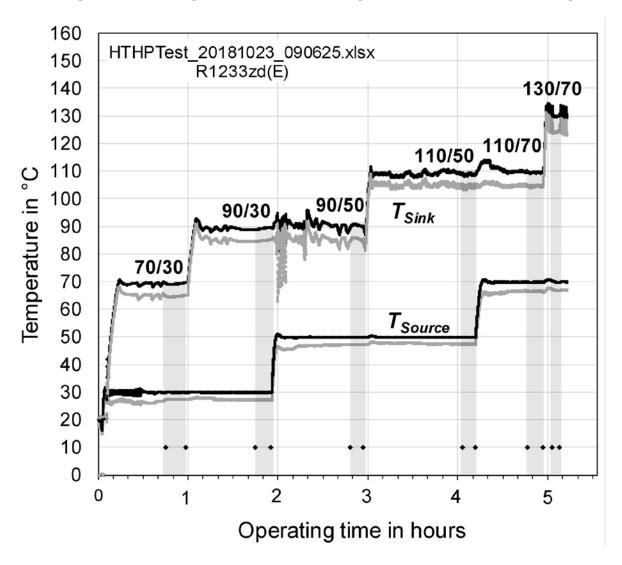
$$COP_{Carnot} = \frac{T_{Sink,out}}{T_{Sink,out} - T_{Source,in}}$$

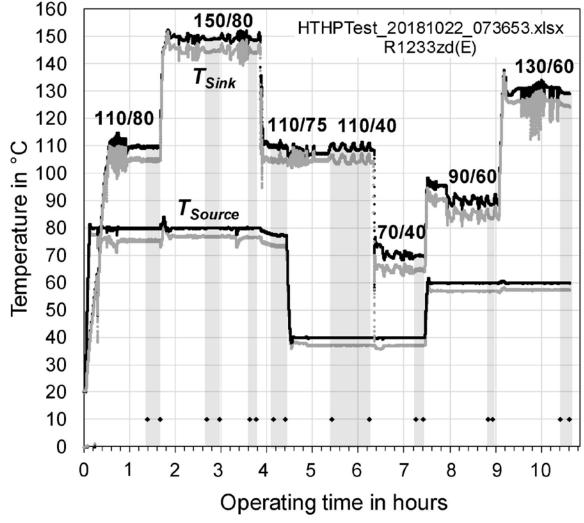
2nd Law efficiency:

$$\eta_{2nd} = \frac{COP_H}{COP_{Carnot}}$$

Error propagation according to RSS method (Root Sum Squares):

$$\Delta COP = \sqrt{\left(\frac{\partial COP}{\partial \dot{m}_{H_2O}} \cdot \Delta \dot{m}_{H_2O}\right)^2 + \left(\frac{\partial COP}{\partial c_{p,H_2O}(T)} \cdot \Delta c_{p,H_2O}(T)\right)^2 + \left(\frac{\partial COP}{\partial \Delta T_{Sink}} \cdot \Delta (\Delta T_{Sink})\right)^2 + \left(\frac{\partial COP}{\partial P_{Comp}} \cdot \Delta P_{Comp}\right)^2}$$


Average uncertainty	R1336mzz(Z)	R1233zd(E)
ΔCOP	\pm 0.21 (4.2%)	± 0.21 (4.1%)
$\Delta \dot{m{Q}}_{Sink}$	\pm 0.14 kW (3.7%)	\pm 0.22 kW (3.8%)
ΔP_{Comp}	\pm 0.031 kW (2.6%)	\pm 0.032 kW (1.7%)

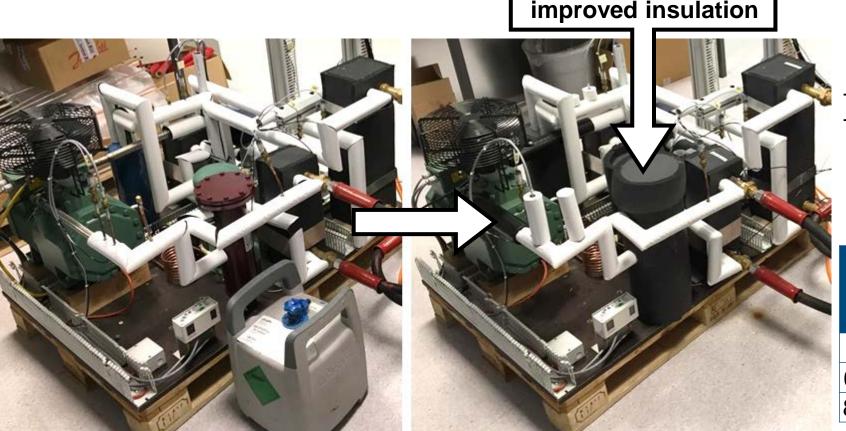

 ΔT_{Sink} 5.0 ± 0.1 K ΔT_{Source} 3.0 ± 0.1 K

University of Applied Sciences of Eastern Switzerland

Temperature profiles of experimental runs (at least 5 min stable conditions)

of Eastern Switzerland

Experimental results with R1336mzz(Z), R1233zd(E) and R1224yd(Z)


Interstate University of Applied

Sciences of Technology Buchs

University of Applied Sciences

COP improvement with better insulation of oil separator, liquid receiver,

and suction line accumulator with Armaflex®HT insulation

improved insulation

Temperature resistance: up to 150°C Thermal conductivity (0°C): 0.038 W/m

@armacell

ArmaFlex*

COP improvement Δ with better insulation

$T_{Source,in}$ / $T_{Sink,out}$ (ΔT_{Lift})	COP (before ¹⁾)	COP (after ²⁾)	Δ
40/90 (50)	2.58	3.14	+22%
60/110 (50)	2.78	3.09	+11%
80/130 (50)	2.67	3.10	+16%

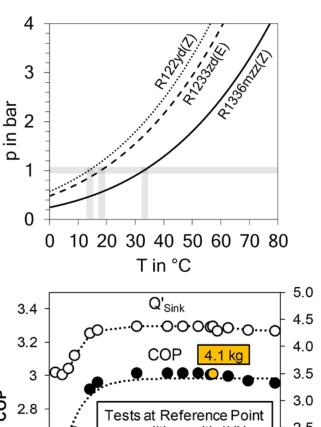
(1-stage cycle with 100% IHX)

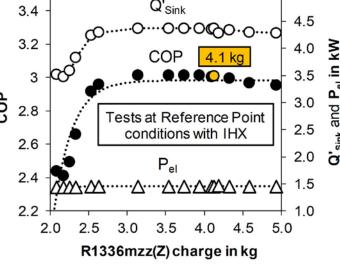
¹⁾ Arpagaus et al. (2018), 17th Int. Refrig. Air Cond. Conf., Purdue, July 9-12, 2018.

²⁾ Arpagaus et al. (2018), DKV-Tagung 2018, Aachen, November 21-23, 2018.

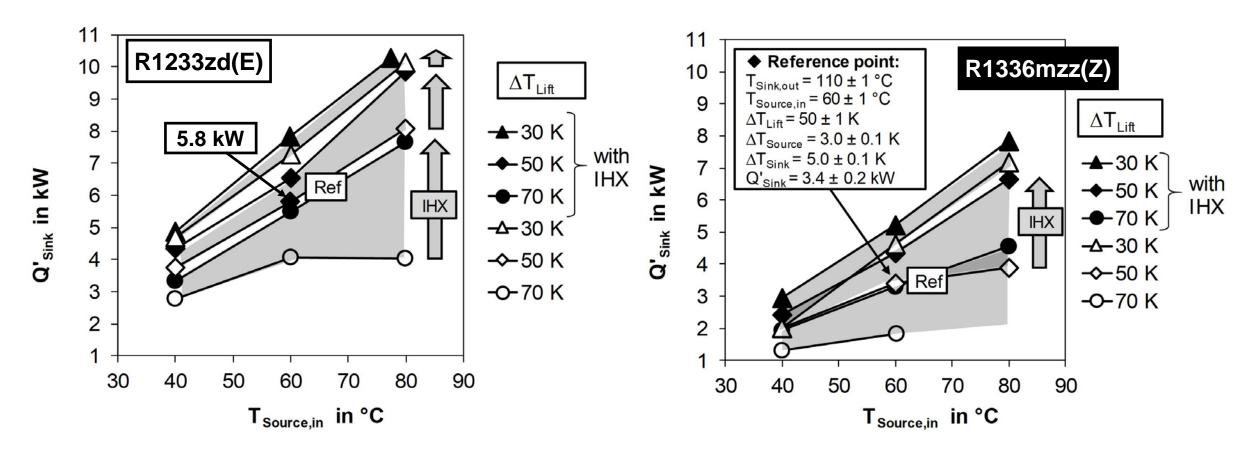
of Eastern Switzerland

Infrared camera image for hot spot identification

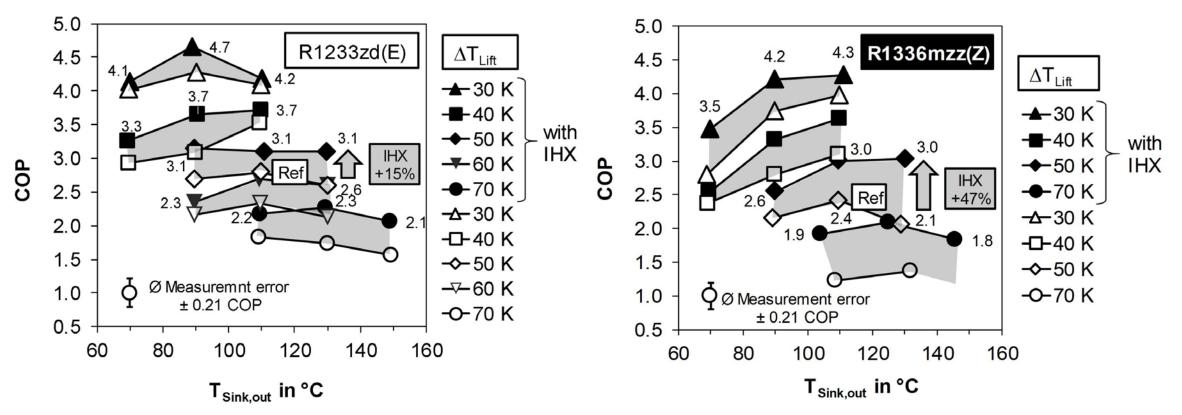

- Heat losses of about 21 ± 7 % estimated from energy balance (major heat losses at the compressor)
- There is still potential for optimization in insulation and possibilities for increasing efficiency



Refrigerant filling procedure with heating-up of the refrigerant cylinder



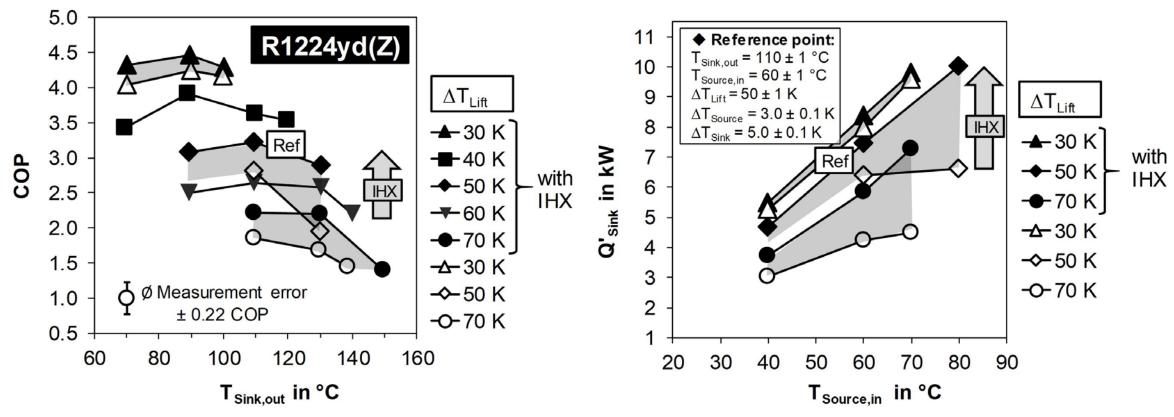
Comparison of heating capacity with the basic and IHX cycle



- R1233zd(E) provides 46 to 76% higher heating capacity than R1336mzz(Z) (e.g. 5.8 vs. 3.4 kW at W60/W110)
- R1336mzz(Z) would require a larger compressor swept volume to achieve similar heating capacities

Operating maps of efficiency with basic and IHX cycle

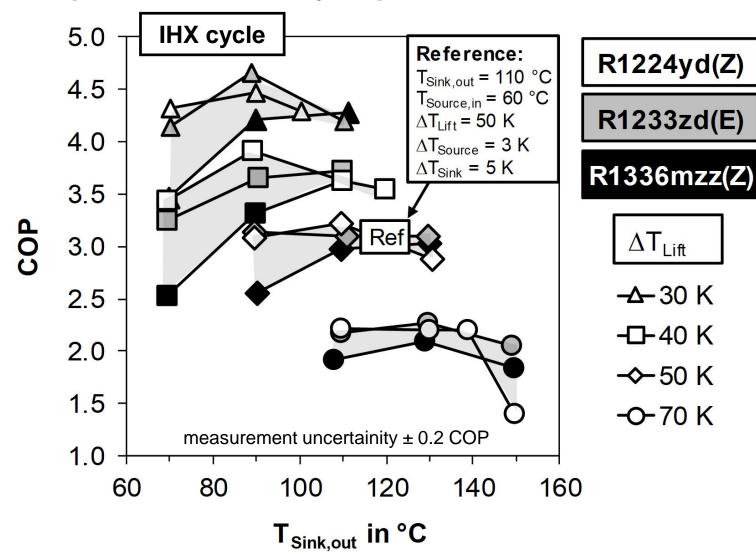
COP vs. $T_{Sink,out}$ at different temperature lifts ($\Delta T_{Lift} = T_{Sink,out} - T_{Source,in}$) from 30 to 70 K



- As expected, COP increase with smaller ΔT_{Lift} and higher $T_{Sink,out}$ according to Carnot relationship
- IHX integration provides significant COP increase (superheat achieved in IHX, higher evaporation temperature)
- Max. heat sink temperature tested was 150 °C with a COP of 2.1 for R1233zd(E) and 1.8 for R1336mzz(Z)

Operating maps of efficiency with basic and IHX cycle

COP vs. $T_{Sink,out}$ at different temperature lifts ($\Delta T_{Lift} = T_{Sink,out} - T_{Source,in}$) from 30 to 70 K

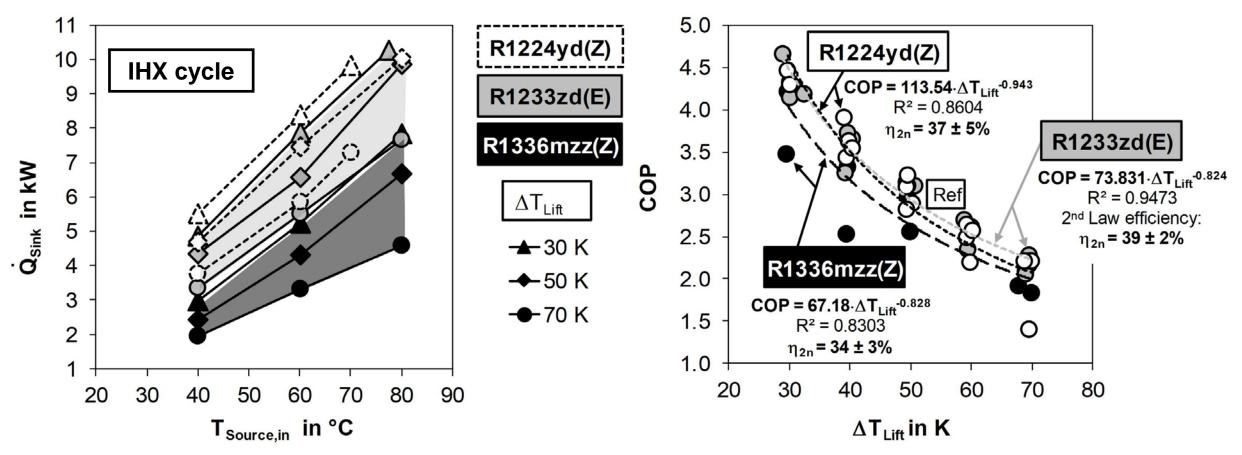


- IHX increases the COP about 14% compared to a basic cycle at Ref conditions
- COP of 3.2 reached at W60/W110 (50 K temperature lift, with IHX)
- 10 kW heating capacity reached at W80/W130 with IHX cycle

Interstate University of Applied Sciences of Technology Buchs University of Applied Sciences

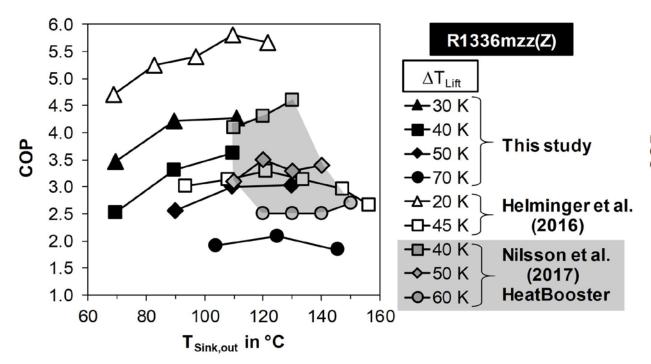
of Eastern Switzerland

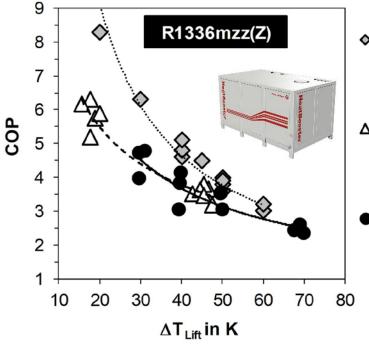
Comparison of efficiency maps



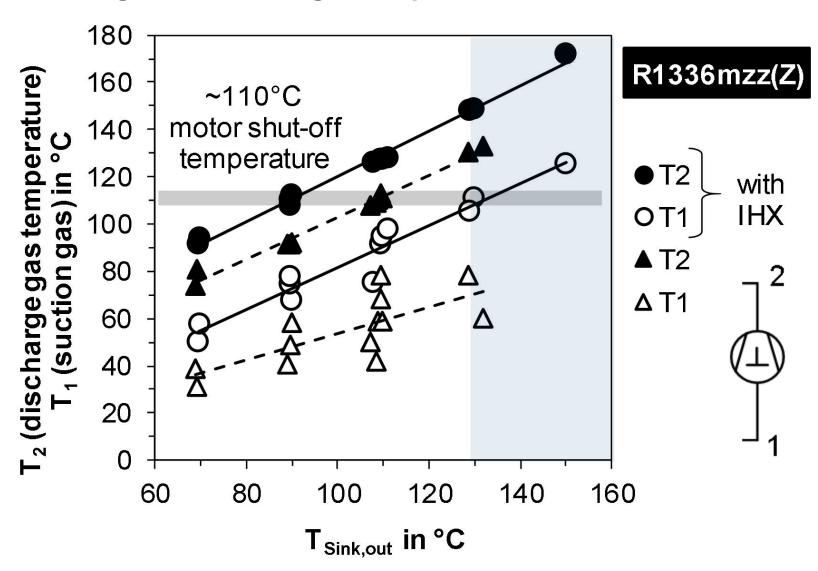
- R1233zd(E) and R1224yd(Z) provide higher COPs compared to R1336mzz(Z) up to about 110°C
- The smaller heating capacity of R1336mzz(Z) leads to more significant relative heat losses
- R1336mzz(Z) achieves potentially higher condensing temperatures (T_{crit} = 171.3°C)
- R1224yd(Z) efficiency drops at 150 °C (close to the critical temperature of 155.5°C)

Comparison of heating capacity and COP fit curves with 2nd Law efficiencies


- R1233zd(E): heating capacity of 5.8 kW at Ref and approx. 10 kW at W80/W110
- R1336mzz(Z): maximum heating capacity of 7.8 kW at W80/W111
- R1224yd(Z): heating capacity on average 9% higher than R1233zd(E)


Experimental results – R1336mzz(Z)

Comparison of COP data from Helminger et al. (2016) and Nilsson et al. (2017)



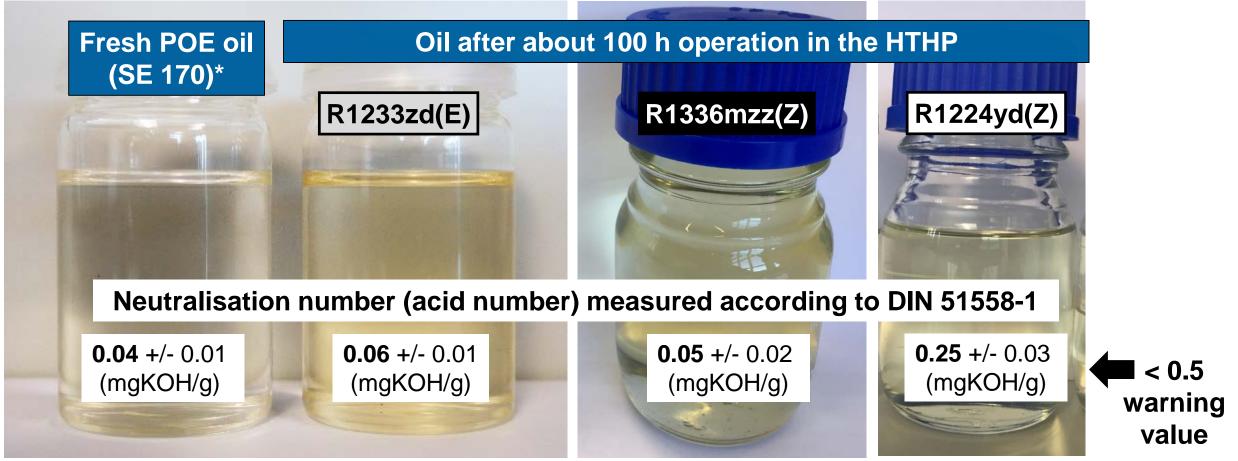
- ♦ Nilsson et al. (2017) $COP = 208.83 \cdot \Delta T_{l iff}^{-1.063}$ $R^2 = 0.9602$, $\eta_{2n} = 41 \pm 3\%$
- △ Helminger et al. (2016) $COP = 30.743 \cdot \Delta T_{Lift}^{-0.607}$ $R^2 = 0.9437$, $\eta_{2n} = 34 \pm 3\%$
- This study $COP = 67.098 \cdot \Delta T_{\text{Liff}}^{-0.827}$ $R^2 = 0.8282$, $\eta_{2n} = 34 \pm 3\%$

- Helminger et al. (2016):
 - 156.3°C and COP of almost 2.7 at 45 K ΔT_{Lift}
 - 2^{nd} Law efficiency of $34 \pm 3\%$ similar to this study
- Nilsson et al. (2017):
 - Commercial HeatBooster technology achieves higher COP and 2nd Law efficiency of 41 ± 3 %
 - COP of 2.5 at 60 K ΔT_{lift}
 - With larger heating power the relative heat losses are getting smaller

Interstate University of Applied Sciences of Technology Buchs University of Applied Sciences

Discharge and suction gas temperatures for tests with R1336mzz(Z)

Basic cycle:


Suction temperature (△ T1) well below the motor shut-off temperature of approx. 110 °C (grey line)

Cycle with IHX:

Suction temperature (O T1) exceeded the motor limit temperature at a heat sink outlet temperature of about 130 °C and higher.

Negligible oil degradation after about 100 h operation in the HTHP

* 0.03 mgKOH/g according to product information from FUCHS

RENISO TRITON SE 170 – synthetic oil based on polyolester (POE) suitable for HFO refrigerants (complete miscibility with R1233zd(E) and R1336mzz(Z) between +100°C and -40°C)

Conclusions

- R1336mzz(Z), R1233zd(E) and R1224yd(Z) successfully tested in single-stage lab-scale HTHP with IHX cycle and up to 10 kW
- Operation of demonstrated at 30 to 80°C heat source and 70 to 150°C heat sink temperatures (30 to 70 K temperature lifts) for possible application of waste heat recovery, steam generation or drying
- At W60/W110 COPs of 3.2, 3.1 and 3.0 for R1224yd(Z), R1233zd(E) and R1336mzz(Z) were measured
- Up to about 110 °C, R1224yd(Z) and R1233zd(E) slightly higher COP than R1336mzz(Z) due to higher heating capacities and lower relative heat losses at the same temperature conditions
- At 150 °C R1233zd(E) and R1336mzz(Z) more efficient than R1224yd(Z) due to higher critical tempeatures
- Integration of an IHX increased COP (+15 to 47%) and heating capacity significantly
- Negligible oil degradation after about 100 h operation in HTHP (acid numbers < 0.5 mgKOH/g level)
- Very low GWP, non-flammability, and negligible environmental impact (low TFA formation during atmospheric degradation) indicate a high potential for future use as refrigerant in HTHP applications and retrofit systems

Acknowledgements

This research project is part of the Swiss Competence Center for Energy Research SCCER EIP of the Swiss Innovation Agency Innosuisse.

We would like to thank Innosuisse for their support.

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse - Swiss Innovation Agency

Thank you for your attention

Dr. Cordin Arpagaus

NTB University of Applied Sciences of Technology Buchs
Institute for Energy Systems IES

cordin.arpagaus@ntb.ch
Tel. +41 81 377 94 34
www.ntb.ch/en/team/cordin-arpagaus

Interstate University of Applied Sciences of Technology Buchs

University of Applied Sciences of Eastern Switzerland

2nd Conference on High Temperature Heat Pumps (HTHP)

Copenhagen, Denmark September 9, 2019

INSTITUTE FOR ENERGY SYSTEMS