
CLOUD COMPUTING
– AUS DER SICHT DES
ANWENDUNGSARCHITEKTEN

Prof. Dr. Olaf Zimmermann
Distinguished (Chief/Lead) IT Architect, The Open Group
ozimmerm@hsr.ch
München, 4. Februar 2014

Enterprise Computing Lab

Vortragsübersicht

 Kontext:
 Architekten und Entwickler, die Cloud Computing nutzen wollen, sind mit

einer Vielzahl neuer Designoptionen konfrontiert, z.B. nichtrelationale
Speichertechniken (NoSQL), Message-Oriented Middleware mit At-Least-
Once Delivery und Virtualisierung.

 Nicht alle Entwurfsmuster eignen sich für Cloud-Anwendungen; mit den
Cloud-Resourcen muss sparsam und fehlertolerant umgegangen werden.

 Dieser Vortrag:
 etabliert Cloud Computing Konzepte anhand von Architekturmustern,
 stellt wichtige Designoptionen bei ausgewählten Cloud-Anbietern vor und
 zeigt, wie Anwendungsarchitekturen cloudfähig gemacht werden können.

© Olaf Zimmermann, 2014.
Page 2

Who Am I

 R+D und Professional Services-Erfahrung seit 1994
 em. IBM Executive IT Architect (senior certified by The Open Group)
 Systems & Network Management, J2EE, Enterprise Application Integration/SOA

 em. ABB Senior Principal Scientist
 Enterprise Architecture Management/Legacy System Modernization/Remoting

 Diverse Industrieprojekte und Coachings
 R+D und IT-Consulting für Middleware, Informationssysteme, Tools
 Tutorials: UNIX/RDBMS, OOP/C++/J2EE, MDSE/MDA, SOA/XML

 Schwerpunkt @ HSR: Entwurf verteilter Systeme
 Cloud, SOA, Web Application Development (Runtime)
 Architekturentscheidungen, Architectural Refactoring (Build Time)

© Olaf Zimmermann, 2014.
Page 3

Aktivitäten im Bereich Cloud Computing

 Pre-Cloud Age: Beratung zu JEE, SOA und e-business Infrastrukturen
 Finanzdienstleister und Zentralbank (D); Corporate IT Telco-Provider (CH)

 Architekturentscheidungen und -prinzipien in Cloud-Referenzarchitektur
 Diese Architektur wurde später zur IBM-Einreichung bei The Open Group
 Architectural Decision (AD) Guidance Model präsentiert auf der SEI-

Konferenz SATURN 2011

 Herstellerevaluation und PoC im Rahmen eines firmeninternen EAM-
Projektes in Prozessautomatisierungs- und Energietechnikkonzern
 Software-as-a-Service, Microsoft-Technologien

 HSR-Projekte Architectural Refactoring for Cloud (ARC) und Cloud
Deployment and Architectural Refactoring Lab (CDAR)

 Stets ein Schwerpunkt: Design for Operations (vgl. DevOps-Bewegung)

© Olaf Zimmermann, 2014.
Page 4

Thought Experiment: Is this Information System Cloud-Affine?

 Core banking system, shared service/service provider model
 Layers Pattern, data and logic in backend, Web frontend, Web services

Reference: IBM,
ACM OOPSLA 2004

© Olaf Zimmermann, 2014.
Page 5

Agenda

 Cloud computing fundamentals
 Definitions
 Patterns
 Usage scenarios
 Risks and inhibitors

 Design options at selected PaaS providers
 Decisions required
 Decision criteria
 Good design practices

 Architecture design for cloud
 IDEAL application properties
 Pitfalls to avoid
 Cloud readiness assessment and architectural refactoring

© Olaf Zimmermann, 2014.
Page 6

Motivation: Famous First Words on Cloud…

 “The interesting thing about cloud computing is that we’ve redefined cloud
computing to include everything that we already do. I can’t think of anything
that isn’t cloud computing with all of these announcements. The computer
industry is the only industry that is more fashion-driven than women’s fashion.
Maybe I’m an idiot, but I have no idea what anyone is talking about. What is
it? It’s complete gibberish. It’s insane. When is this idiocy going to stop?”

 Larry Ellison, chairman, Oracle

 “If you think you’ve seen this movie before, you are right. Cloud computing is
based on the time-sharing model we leveraged years ago before we could
afford our own computers. The idea is to share computing power among
many companies and people, thereby reducing the cost of that computing
power to those who leverage it. The value of time share and the core value of
cloud computing are pretty much the same, only the resources these days are
much better and more cost effective.”

 David Linthicum, author, Cloud Computing and SOA Convergence in Your
Enterprise: A Step-by-Step Guide

Reference: J. McKendrick, 10 Quotes on Cloud Computing That Really Say it All, Forbes 2013

© Olaf Zimmermann, 2014.
Page 7

http://news.cnet.com/8301-13953_3-10052188-80.html
http://www.amazon.com/Cloud-Computing-Convergence-Enterprise-Step/dp/0136009220

History and Enablers

 Utility computing (paper ~1960s)

 Host virtualization (on the mainframe)

 on demand computing (IBM strategy following e-business ~2002)

 Omnipresence of the Web, success of Internet technologies
 Always-on mentality, WLANs, mobile computing, Web services, SOA

 Commodity hardware (blade PCs)

 Advanced in automation (of systems management)

© Olaf Zimmermann, 2014.
Page 8

Pragmatic Definition (by CloudCamp/Dave Nielsen)

“Cloud is OSSM (pronounced ‘awesome’), meaning that Cloud
Computing is a computing resource that is:

1. On-demand: the server is already setup and ready to be deployed

2. Self-service: customer chooses what they want, when they want it

3. Scalable: customer can choose how much they want and ramp up if
necessary

4. Measurable: there’s metering/reporting so you know you are getting
what you pay for”

So not (only): Online Storage, Services, Web Hosting, Virtualization

Reference: B. Kepes, CloudU (online training, provided by RackSpace)

© Olaf Zimmermann, 2014.
Page 9

Official Definition (NIST)

 Cloud Computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management
effort or service provider interaction.

 This cloud model promotes availability and is composed of five
essential characteristics, three service models, and four deployment
models.
 The essential characteristics are on-demand self-service, broad network

access, resource pooling, rapid elasticity, and measured service.
 The three service models are software, platform, and infrastructure (all as a

service).
 The four deployment models: private, community, public, and hybrid

Reference: The NIST Definition of Cloud Computing, http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

© Olaf Zimmermann, 2014.
Page 10

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

NIST Definition (Visualization)

Reference: M. Papazoglou, Web Services 2e PowerPoints on the Web, 2nd Edition, © Pearson Education Limited 2012

© Olaf Zimmermann, 2014.
Page 11

Functional Roles and Modules in a Cloud Architecture

 Roles: Service consumer, service provider, service developer

© Olaf Zimmermann, 2014.
Page 12

Reference: M. Papazoglou, Web Services 2e PowerPoints on the Web, 2nd Edition, © Pearson Education Limited 2012

Cloud Computing Provider Example: Amazon Web Services

AWS Now Five Times The Size Of Other Cloud Vendors Combined (Gartner 2013)
http://readwrite.com/2013/08/21/gartner-aws-now-5-times-the-size-of-other-cloud-vendors-combined

http://www.deepfield.net/2012/04/how-big-is-amazons-cloud
(2012)

© Olaf Zimmermann, 2014.
Page 13

http://readwrite.com/2013/08/21/gartner-aws-now-5-times-the-size-of-other-cloud-vendors-combined
http://www.deepfield.net/2012/04/how-big-is-amazons-cloud

Platform-as-a-Service (PaaS) Provider Example: Heroku

 Measured: Add On features
and Dyno use
 Kind of virtual UNIX shell:

https://devcenter.heroku.com/articles/
dynos

© Olaf Zimmermann, 2014.
Page 14

https://devcenter.heroku.com/articles/dynos
https://devcenter.heroku.com/articles/dynos

Software-as-a-Service (SaaS) Example: BookMe (Doodle)

 Multi-tenant Web application that provides a customer self service
channel for booking service appointments
 Particularly interesting for small and medium businesses like hairdressers,

therapists, driving schools (SaaS consumers)
 Integrated with electronic calendars like Google Calendar
 No need to install any software (for SaaS consumers and their clients)
 Supplied/provided by Doodle AG (SaaS provider)
 Domain expertise (business process: calendar scheduling)
 User interface and application logic
 High-scale IT infrastructure
 Subscription-based monthly billing

 https://doodle.com/bookme/

 http://en.blog.doodle.com/2013/11/18/doodles-technology-landscape-2/

© Olaf Zimmermann, 2014.
Page 15

https://doodle.com/bookme/
http://en.blog.doodle.com/2013/11/18/doodles-technology-landscape-2/

Cloud Computing Patterns (Springer-Verlag 2014)

© Olaf Zimmermann, 2014.
Page 16

Reference: Cloud Computing Patterns, Springer 2014, http://cloudcomputingpatterns.org/

http://cloudcomputingpatterns.org/

Pattern Map: Cloud Offerings

© Olaf Zimmermann, 2014.
Page 17

Pattern Map: Application Architecture Patterns

© Olaf Zimmermann, 2014.
Page 18

Cloud Application Architecture Patterns (Overview)

Distributed
Application

Batch Processing
Component

Multi-component
Image

Application
Component Proxy

Loose
Coupling

Data Access
Component

Shared
Component

Compliant Data
Replication

Data
Abstractor

Stateful
Component

Tenant-isolated
Component

Integration
Provider

Stateless
Component

Dedicated
Component

Message
Mover

Restricted Data
Access Component

Idempotent Proces-
sing Component

Transaction-
based Processor

Timeout-based Mes-
sage Processor

User Interface
Component

Processing
Component

© Olaf Zimmermann, 2014.
Page 19

Pattern Map: Cloud Management Patterns

© Olaf Zimmermann, 2014.
Page 20

Watchdog Pattern

• Application components are stateless
• Component health is monitored

• Periodic heartbeats: components notify that they are functioning
• Test requests: result of test data is compared to expected results
• Environment: provider-supplied reachability monitoring

© Olaf Zimmermann, 2014.
Page 21

Cloud Use Cases (Usage Scenarios)

 Make data available to large communities

 Perform computation-intense activities
 Peaky systems

 One-time usage

 Support for short-term projects
 Low-risk startup/scaled agile

 Make applications available to mobile users

 General-purpose software
 Email, build server running test cases

 Backup

 Disaster recovery

Reference: G. Lewis, Architectural Implications of Cloud Computing (SEI SATURN 2013 tutorial)

© Olaf Zimmermann, 2014.
Page 22

Risiks and Inhibitors

 Control over hosting environment
 Number of virtual nodes, upgrade policy

 Data privacy and regulation
 E.g. see http://www.datenschutz-forum.ch/ (Switzerland)

 Legal responsibilities, compliance, Service Level Agreements (SLAs)
 Who is responsible for outages, who has to proof what happened?
 How is troubleshooting done?
 Do desaster recovery plans exist?

 Single point of failure, external dependencies
 Which IaaS Provider is used by PaaS- or SaaS-provider

(how about indirect dependencies)?
 How about future dependencies?
 What happens in case of mergers and acquisitions (on provider side)?

© Olaf Zimmermann, 2014.
Page 23

http://www.datenschutz-forum.ch/

Agenda

 Cloud computing fundamentals
 Definitions
 Patterns
 Usage scenarios
 Risks and inhibitors

 Design options at selected PaaS providers
 Decisions required
 Decision criteria
 Good design practices

 Architecture design for cloud
 IDEAL application properties
 Pitfalls to avoid
 Cloud readiness assessment and architectural refactoring

HSR: Cloud Deployment and Architectural Refactoring (CDAR)

Goal of CDAR lab:

 Develop criteria for public PaaS comparison/evaluations

 Harvest architectural knowledge from gained experience

CDAR approach:

 Develop new applications and partially reengineer existing ones –
and deploy them to selected cloud offerings (in varying configurations)
 Four public/polyglot PaaS clouds investigated (so far)
 Eight applications deployed and run (so far)
 JS2E and JEE enterprise applications (of varying complexity)
 Servlets, Spring MVC, ActiveMQ, WSDL/SOAP, JDBC, MongoDB, …

 Probe applications, e.g. system self information (diagnostics), socket connections

© Olaf Zimmermann, 2014.
Page 25

CDAR: Domain-Driven Design Sample Application (Experiment)

 Comprehensive Spring
application (SourceForge)
 Common Patterns and

APIs
 Unchanged since 2009
 Runs fine in standalone

Tomcat and JBoss
 Only runs partially in one

public PaaS cloud:

© Olaf Zimmermann, 2014.
Page 26

http://dddsample.sourceforge.net/

CDAR: PaaS Platform Criteria (1/2)

 Support for defining cloud characteristics (“OSSM”):
 On demand
 Self service
 Scalable
 Measured

 Billing model and Service Level Agreements (SLAs)
 Accountability of provider, penalties/refunds, customer obligations

 Physical location (of data)

 Country/place of jurisdiction (CH/EU/other)

 Service scope
 Platform middleware versions?
 Limitations:
 Can main programs (batch jobs) be run?
 Can JEE EARs be deployed?

© Olaf Zimmermann, 2014.
Page 27

CDAR: PaaS Platform Criteria (2/2)

 Deployment process and tools; standardization
 Web console
 Management APIs
 Local SDK (command line tools, Eclipse plugins)
 Topology and Orchestration Specification for Cloud Applications (TOSCA)

 User/programmer documentation incl. getting started information

 Cloud services lifecycle, e.g. hibernation due to inactivity/restart time?

 Operational model (runtime topologies)
 Inbound traffic, outbound traffic, cloud-internal communication

 Domain and port management capabilities for user
 E.g. own URIs/domain names possible (DNS management)?
 Can virtual hosts (custom DNS entries) be defined?

 API security and VPN support
 Credentials, storage locations

© Olaf Zimmermann, 2014.
Page 28

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

CDAR: Architectural Issues Identified (Decisions Required)

 Application server vs. native cloud PaaS services
 E.g. one of the evaluated PaaS providers only supports a subset of JEE
 JEE future is discussed controversially, see e.g.

https://devcenter.heroku.com/articles/intro-for-java-developers

 External interfaces, ports (operational model/node topology)
 E.g. Identity/access manager for role-based access control (if any)
 E.g. RMI communication (registry)
 E.g. Messaging with ActiveMQ (or other MOM provider, e.g. cloud-internal)

 Virtual Private Network (VPN) between Web application and database
server
 E.g. Amazon http://aws.amazon.com/de/vpc/

 URI design
 Virtual host and relative URIs

© Olaf Zimmermann, 2014.
Page 29

https://devcenter.heroku.com/articles/intro-for-java-developers
http://aws.amazon.com/de/vpc/

CDAR: More Architectural Issues Identified (Decisions Required)

 Integration in a hybrid cloud
 Federated identitity management
 Data replication, data migration

 Approach to systems and service management
 Custom systems management and/or usage of provider capabilities?
 Tradeoff: control and provider independence vs. effort, level of detail

 CSAR design (if TOSCA is used)

 Approach to billing (if any), integration of payment services
 Billing of cloud solution to client (IaaS, PaaS, SaaS)
 Billing of cloud usage (SaaS, PaaS, IaaS)
 Including initial and continuous data transfer (batch/FTP or RESTful HTTP)

© Olaf Zimmermann, 2014.
Page 30

CDAR: Deployment Considerations

 Build Procedures and Deployment Process
 Traditional staging (unit test/integration test/acceptance test/production)?
 Some cloud users report to deploy to production directly (highly agile approach)

 In public PaaS context:
 Who tests service updates pushed into production instance via GitHub?
 Is it ok to host an RDBMS on a public IaaS offering and expose JDBC port

on the Internet (e.g. port 3306)?
 What if a public PaaS provider uses another cloud provider for IaaS?
 Are the HTTP request/session timeout settings defined by cloud provider

acceptable? Can they be overwritten?
 Same for other connection types, e.g. JDBC

© Olaf Zimmermann, 2014.
Page 31

Good Cloud Design Practices (from CDAR Lab)

 Avoid calls to proprietary platform libraries (e.g., via JNI)

 Limit usage of expensive operations, e.g. SecureRandom in Java SE

 Do not define resource identifiers such as IP addresses statically

 Prefer HTTP over raw socket communication even for cloud-internal
integration (or use messaging capabilities offered by cloud provider)

 Do not expect cloud messaging to have the same semantics and QoS as
traditional messaging systems (at-least-once vs. exactly-once delivery)

 Do not expect NoSQL storage to provide the same level of programming
and database management convenience as mature SQL database
systems

 Do not expect cloud provider to handle backup and recovery of
application data for you

 Be prepared to log resource consumption on same level of detail as
provider (in case bill from provider contains suspicious items)

© Olaf Zimmermann, 2014.
Page 32

Agenda

 Cloud computing fundamentals
 Definitions
 Patterns

 Design options at selected PaaS providers
 Decisions required
 Decision criteria
 Good design practices

 Architecture design for cloud
 IDEAL application properties
 Pitfalls to avoid
 Cloud readiness assessment and architectural refactoring

© Olaf Zimmermann, 2014.
Page 33

IDEAL Cloud Application Properties

Distribution: applications are decomposed to…
… use multiple cloud resources
… support the fact that clouds are large globally distributed systems

Elasticity: applications can be scaled out dynamically
Scale out: performance increase through addition of resources
Scale up: performance increase by increasing resource capabilities

? Loose Coupling: influence of application components is limited
Example: failures should not impact other components
Example: addition / removal of components is simplified

Isolated State: most of the application is stateless with respect to:
Session State: state of the communication with the application
Application State: data handled by the application

Automated Management: runtime tasks have to be handled quickly
Example: exploitation of pay-per-use by changing resource numbers
Example: resiliency by reacting to resource failures

© Olaf Zimmermann, 2014.
Page 34

Reference: Cloud Computing Patterns, Springer 2014, http://cloudcomputingpatterns.org/

http://cloudcomputingpatterns.org/

Best Practices für Cloud-Native Applications

 J. Varia from Amazon (Reference: http://aws.amazon.com/whitepapers/)
 “Design for failure and nothing will fail

1. Have a coherent backup and restore strategy for your data and automate it
2. Build process threads that resume on reboot
3. Allow the state of the system to re-sync by reloading messages from queues
4. Keep pre-configured and pre-optimized virtual images to support (2) and (3) on

launch/boot
5. Avoid in-memory sessions or stateful user context, move that to data stores.

 Decouple your components
 Implement elasticity
 Automate your infrastructure
 Bootstrap your instances

 Think parallel
 Keep dynamic data closer to the compute and static data closer to the

end-user”

© Olaf Zimmermann, 2014.
Page 35

http://aws.amazon.com/whitepapers/

HSR Research Project Architectural Refactoring for Cloud (ARC)

 ARC context and project goal
 Architectural knowledge about cloud design still lacking

 Cloud provider, cloud user
 Migration to cloud/legacy system transformation is a large-scale refactoring
 Code refactoring is a very popular practice in development (agile

community)
 Supported by Eclipse and other IDEs

 Create and manage architectural knowledge about cloud refactorings

© Olaf Zimmermann, 2014.
Page 36

ARC: From Traditional Layer-Tier Architectures to Cloud Services

Logic

Data

On which tier
should
existing
 and new

applications be
integrated?

Traditional

Applications

SOA

Services

Basket of Services Discrete Applications
(Two or Three Tiers)

Users

UI

© Olaf Zimmermann, 2014.
Page 37

Decision Required: Session State Management

 An example of a recurring design issue when moving a Web application
to a cloud is session state management.

 According to Patterns of Enterprise Application Architecture by M.
Fowler, the three top-level design options are:
 Client Session State (HTML/HTTP: cookie, hidden field, URL rewrite)
 Server Session State (JEE: HTTP session object)
 Database Session State (JEE: SQL DB via JDBC)

 This decision has to be made/revisited when taking any Web-based
business application to the cloud; outcomes may vary, but issues and
options stay the same (i.e., they recur).
 Architects remain master of their project’s destiny, but their decisions are

backed by the recommendations given by the community.

© Olaf Zimmermann, 2014.
Page 38

http://martinfowler.com/eaaCatalog/index.html

Cloud Example: Refactor State Management Design

 Client Session State
 Scales well, but has security and possibly performance problems
 This does not change when moving to a cloud platform.

 Server Session State
 Uses main memory or proprietary data stores in an application server (e.g.

HTTP session in JEE servlet container)
 Persistent HTTP sessions no longer recommended when deploying to a

cloud due to scalability and reliability concerns.

 Database Session State
 Is well supported in many clouds, e.g. via highly scalable key-value storage

(a type of NoSQL database)

© Olaf Zimmermann, 2014.
Page 39

Cloud Affinity of PoEAA Patterns (1/3)

PoEAA Pattern Suitability for Cloud Comment

Client Session State Yes and no As good or bas as in traditional
deployment (security?)

Server Session State No Hinders scale out

Database Session State Yes Can use DB (e.g. NoSQL)

Model-View-Controller Yes (with persistent model) Web frontends are cloud-affine

Front Controller Yes (Web frontends) See above

Page Controller Yes (Web frontends) See above

Application Controller Yes (Web frontends) See above

other Presentation Layer Patterns Yes (Web frontends) See above

© Olaf Zimmermann, 2014.
Page 40

Patterns of Enterprise Application Architecture Patterns (PoEAA):
http://martinfowler.com/eaaCatalog/

http://martinfowler.com/eaaCatalog/modelViewController.html
http://martinfowler.com/eaaCatalog/frontController.html
http://martinfowler.com/eaaCatalog/pageController.html
http://martinfowler.com/eaaCatalog/applicationController.html
http://martinfowler.com/eaaCatalog/

Cloud Affinity of PoEAA Patterns (2/3)

PoEAA Pattern Suitability for Cloud Comment

Transaction Script Yes Procedures should be self contained
(stateless interactions)

Domain Model Depends on complexity of
domain model

Object tree in main memory might limit
scale out (and database partitioning)

Table Module No or implementation
dependent

Big data sets problematic unless
partitioned (e.g. map-reduce)

Service Layer Yes SOA and REST design principles should
be adhered to, e.g. no object references in
domain model, but only instances of Data
Transfer Object in interface (larger
discussion required)

Remote Facade Yes Can be introduced for cloud enablement of
existing solutions; can wrap calls to PaaS
provider to support maintainability and
portability

© Olaf Zimmermann, 2014.
Page 41

Patterns of Enterprise Application Architecture Patterns (PoEAA):
http://martinfowler.com/eaaCatalog/

http://martinfowler.com/eaaCatalog/transactionScript.html
http://martinfowler.com/eaaCatalog/domainModel.html
http://martinfowler.com/eaaCatalog/tableModule.html
http://martinfowler.com/eaaCatalog/serviceLayer.html
http://martinfowler.com/eaaCatalog/dataTransferObject.html
http://martinfowler.com/eaaCatalog/dataTransferObject.html
http://martinfowler.com/eaaCatalog/remoteFacade.html
http://martinfowler.com/eaaCatalog/

Cloud Affinity of PoEAA Patterns (3/3)

PoEAA Pattern Suitability for Cloud Comment

Active Record Limited Good when RDB exists in cloud or when
records have simple structures; complex
structures can be difficult to handle for
NoSQL storage (mapping need)

Row Data Gateway Yes Fits scale out

Table Data Gateway No or implementation
dependent

Big data sets problematic unless
partitioned (e.g. map-reduce)

System Transaction Depends on cloud storage
capabilities (NoSQL?)

Larger discussion required (CAP BASE
vs. ACID etc.)

Business Transaction Yes If cloud design best practices are adhered
to (statelessness etc.)

© Olaf Zimmermann, 2014.
Page 42

Patterns of Enterprise Application Architecture Patterns (PoEAA):
http://martinfowler.com/eaaCatalog/

http://martinfowler.com/eaaCatalog/activeRecord.html
http://martinfowler.com/eaaCatalog/rowDataGateway.html
http://martinfowler.com/eaaCatalog/tableDataGateway.html
http://martinfowler.com/eaaCatalog/

Patterns to Improve Startup Times

 Consider the Lazy Load pattern from PoEAA
 http://www.martinfowler.com/eaaCatalog/lazyLoad.html

 Not recommended: Eager Load – anti pattern
 E.g. avoid pre-loading caches on startup (a variant of Eager Load)
 http://www.thedwick.com/2010/06/performance-anti-pattern-pre-loading-caches-

on-startup/

 Similar considerations/tradeoffs apply for initialization of other
application resources
 Connection pools, factories
 Bean pools, system transactions
 User interface configuration (selection dialogs, validation rules)

© Olaf Zimmermann, 2014.
Page 43

http://www.martinfowler.com/eaaCatalog/lazyLoad.html
http://www.thedwick.com/2010/06/performance-anti-pattern-pre-loading-caches-on-startup/
http://www.thedwick.com/2010/06/performance-anti-pattern-pre-loading-caches-on-startup/

Initial Ideas for Content of Arch. Ref. (AR) Catalog for Cloud

 Change cloud computing pattern
 E.g. from server state to database state management to support horizontal

scaling (sharding)
 E.g. from normalized to partitioned/replicated master data to support

NoSQL storage of transactional data
 E.g. from flat rate to usage-based billing to support elasticity in a cost-

efficient manner

 See separate OOP session for more
about architectural refactoring:

© Olaf Zimmermann, 2014.
Page 44

Towards a Cloud Domain Refactoring Catalog (Preview)

Category Refactorings

IaaS Virtualize Server Virtualize Storage Virtualize Network

IaaS, PaaS Swap Cloud Provider Change Operating System Open Port

PaaS “De-SQL” “BASEify” (remove ”ACID”) Replace DBMS

PaaS Change Messaging QoS Upgrade Queue Endpoint(s) Swap Messaging Provider

SaaS/application Increase Concurrency Add Cache Precompute Results

SaaS/application (CCP book, CBDI-SAE) (all Stal refactorings) (PoEAA/Fowler patterns)

Scalability Change Strategy (Scale
Up vs. Scale Out)

Replace Own Cache with
Provider Capability Add Cloud Resource

(xaaS)
Performance Add Lazy Loading Move State to Database

Communication Change Message
Exchange Pattern

Replace Transport Protocol Change Protocol Provider

User management Swap IAM Provider Replicate Credential Store Federate Identities

Service/deployment
model changes

Move Workload to Cloud
(use XaaS)

Privatize Deployment,
Publicize Deployment

Merge Deployments (Use
Hybrid Cloud)

© Olaf Zimmermann, 2014.
Page 45

http://cloudcomputingpatterns.org/
http://everware-cbdi.com/index.php?cID=pattern-index&tab=520
http://www.sigs.de/download/oop_08/Stal%20Mi3-4.pdf
http://martinfowler.com/eaaCatalog/index.html

Application Migration (including Database/Data Access Layer)

 Research project(s) at University of Stuttgart
 Author’s copies of publications can be found via this

page (start with the above two)

 Online tool assisting with planning and executing
migrations to the cloud (research prototype):
 Interview: current state, desired state
 Output: migration advice and automation snippets
 http://www.cloud-data-migration.com/

© Olaf Zimmermann, 2014.
Page 46

http://www.iaas.uni-stuttgart.de/institut/mitarbeiter/strauch/
http://www.iaas.uni-stuttgart.de/institut/mitarbeiter/strauch/
http://www.cloud-data-migration.com/
http://www.cloud-data-migration.com/

ARC: Architectural Principles for Cloud-Native Applications

 Design application startup and restart procedures as lean as possible
 How long does it take your application server to display an “open for e-

business” message after a restart (process and/or hardware)?

 Let all components implement the Service Layer pattern
 Define with Remote Facades and expose them with JAX-WS or JAX-RS
 Use messaging for cloud-internal communication and integration

 Define all Data Transfer Objects (DTOs) to be serializable
 See experiment with DDD Sample in PaaS Provider 1 (Spring MVC)

 Use Internet security technologies to satisfy application security needs
 E.g. often no connectivity to company-internal LDAP or Active Directory

 Model all communication dependencies explicitly and consult IT
infrastructure architects both on provider and on consumer side
 E.g. one PaaS Provider requires inbound port 5000 connectivity to support

remote terminals (required for platform/instance management)

© Olaf Zimmermann, 2014.
Page 47

http://martinfowler.com/eaaCatalog/serviceLayer.html
http://martinfowler.com/eaaCatalog/remoteFacade.html
http://martinfowler.com/eaaCatalog/dataTransferObject.html

Schlussgedanken (1/2)

 Cloud Computing wird zukünftig ein wichtiges Hostingmodell sein
 Cloud ist OSSM (pronounce: ”awesome”)
 Utility computing made real – nach vielen vergeblichen Anläufen

 Definierende Konzepte:
 Service-Modelle, Deployment-Modelle
 SLAs und Billing (Opex statt Capex)

 Cloud Computing Patterns sind in der Literatur verfügbar – Beispiele:
 At-Least-Once Delivery
 Map-Reduce
 Key-Value Storage und weitere NoSQL-Datenbanktypen

 Cloud Design ist Software-Architektur-Design
 Viel Management-Bedarf, Security-Fragestellungen

 HSR-Projekte: CDAR Lab, ARC, IFS Software Health Check (for Cloud)

© Olaf Zimmermann, 2014.
Page 48

http://www.ifs.hsr.ch/Better-Software-Simpler-Fas.5736.0.html

Schlussgedanken (2/2)

 Der cloud-interessierte Anwendungsarchitekt…
 Kennt CPU- und Speicherverbrauch seiner Anwendung
 Kennt die SLAs seiner Cloud-Provider Shortlist
 Trifft bewusste Architekturentscheidungen (Cloud-Patternwahl usw.)

 Der cloud-freundliche Infrastrukturarchitekt (bzw. Betriebsleiter)…
 Kann Anwendungen nicht nur auf eigene, sondern auch auf externe Clouds

deployen
 Betreibt Private Cloud für sein Unternehmen/seine Organisationseinheit
 Beherrscht das automatisierte Cloud Provisioning und überwacht

Deployments mit Hilfe von Watchdogs etc.

 Der cloud-informierte Unternehmensarchitekt…
 Hat eine Cloud-Strategie
 Beachtet Data Privacy-Randbedingungen
 Bietet Cloud Coachings und Readyness Assessments an

© Olaf Zimmermann, 2014.
Page 49

More Information

 CDAR and ARC projects at HSR
 http://www.ifs.hsr.ch/Olaf-Zimmermann.11623.0.html?&L=4

and ozimmerm@hsr.ch

 Online-Schulung
 E.g. Rackspace Cloud University (CloudU),

http://www.rackspace.com/knowledge_center/cloudu/

 Cloud Computing Patterns (Springer 2014)
 http://cloudcomputingpatterns.org/?page_id=305

 Analysten-Reports und Knowledge Hubs
 z.B. InfoWorld, DZone

 Blogs

© Olaf Zimmermann, 2014.
Page 50

 http://searchcloudcomputing.techtarget
.com/feature/Top-five-must-read-cloud-
computing-blogs

http://www.ifs.hsr.ch/Olaf-Zimmermann.11623.0.html?&L=4
mailto:ozimmerm@hsr.ch
http://www.rackspace.com/knowledge_center/cloudu/
http://cloudcomputingpatterns.org/?page_id=305
http://searchcloudcomputing.techtarget.com/feature/Top-five-must-read-cloud-computing-blogs
http://searchcloudcomputing.techtarget.com/feature/Top-five-must-read-cloud-computing-blogs
http://searchcloudcomputing.techtarget.com/feature/Top-five-must-read-cloud-computing-blogs

	Cloud Computing �– aus der Sicht des Anwendungsarchitekten�
	Vortragsübersicht
	Who Am I
	Aktivitäten im Bereich Cloud Computing
	Thought Experiment: Is this Information System Cloud-Affine?
	Agenda
	Motivation: Famous First Words on Cloud…
	History and Enablers
	Pragmatic Definition (by CloudCamp/Dave Nielsen)
	Official Definition (NIST)
	NIST Definition (Visualization)
	Functional Roles and Modules in a Cloud Architecture
	Cloud Computing Provider Example: Amazon Web Services
	Platform-as-a-Service (PaaS) Provider Example: Heroku
	Software-as-a-Service (SaaS) Example: BookMe (Doodle)
	Cloud Computing Patterns (Springer-Verlag 2014)
	Pattern Map: Cloud Offerings
	Pattern Map: Application Architecture Patterns
	Cloud Application Architecture Patterns (Overview)
	Pattern Map: Cloud Management Patterns
	Watchdog Pattern
	Cloud Use Cases (Usage Scenarios)
	Risiks and Inhibitors
	Agenda
	HSR: Cloud Deployment and Architectural Refactoring (CDAR)
	CDAR: Domain-Driven Design Sample Application (Experiment)
	CDAR: PaaS Platform Criteria (1/2)
	CDAR: PaaS Platform Criteria (2/2)
	CDAR: Architectural Issues Identified (Decisions Required)
	CDAR: More Architectural Issues Identified (Decisions Required)
	CDAR: Deployment Considerations
	Good Cloud Design Practices (from CDAR Lab)
	Agenda
	IDEAL Cloud Application Properties
	Best Practices für Cloud-Native Applications
	HSR Research Project Architectural Refactoring for Cloud (ARC)
	ARC: From Traditional Layer-Tier Architectures to Cloud Services
	Decision Required: Session State Management
	Cloud Example: Refactor State Management Design
	Cloud Affinity of PoEAA Patterns (1/3)
	Cloud Affinity of PoEAA Patterns (2/3)
	Cloud Affinity of PoEAA Patterns (3/3)
	Patterns to Improve Startup Times
	Initial Ideas for Content of Arch. Ref. (AR) Catalog for Cloud
	Towards a Cloud Domain Refactoring Catalog (Preview)
	Application Migration (including Database/Data Access Layer)
	ARC: Architectural Principles for Cloud-Native Applications
	Schlussgedanken (1/2)
	Schlussgedanken (2/2)
	More Information

