

Packaging of Miniaturized Sensor Modules with LCP (Liquid Crystal Polymer)

Eckardt Bihler, September 2021

Content

- Introduction Where we come from
- Liquid Crystal Polymer (LCP)
- Substrate Technology
- Encapsulation

Where we come from

Bio-electronic implants

Our vision: All-in-one substrate concept

Bio-compatible substrate technology

Our vision: All-in-one substrate concept

Bio-compatible substrate technology

Polymer Categories

Thermoplastic Polymers

Melting point

Thermosetting Polymers

CuredNo melting point

Thermoplastic resins

Examples:
Polyethylene
PTFE
LCP
TPU (Pellethane)
Polycarbonate
PET
PMMA

*Examples:*Silicone Rubber
Glass Fiber Epoxy
Polyimide
Polyurethane Foam
Bakelite

Remark: most polymers used in electronics are thermoset polymers

nermosetting resins

Il rights reserved by DYCONEX. Unless duly approved in writing by authorized YCONEX personnel, any dissemination, in full or in parts, is strictly prohibited.

Thermoplastic Polymers

Amorphous Polymers	Semi-Crystalline Polymers	Liquid Crystal Polymers
No sharp melting point	Relatively sharp melting point	Sharp melting point; depends on thermal history
Random chain orientation in both melt and solid phase	Ordered chain structure only in solid phase	Ordered chain structure in both melt and solid phase
Does not flow as easy in melting stage	Flows easily above melting point	Flows extremely easy under shear within melting range
Examples: ABS, PS, PC,	Examples: PTFE, TPU, Polyamide, PE	Examples: LCP

Liquid Crystal Polymer

High performance organic polymer

LCP (LIQUID CRYSTAL POLYMER)

- Flexible thermoplastic base material
- Chemically inert under most conditions
- Operational stable up to 190 °C; Solderable 260 °C
- Melting temperature Tm > 280 °C < 340 °C
- Very low water absorption (0.04 %) & diffusion rates
- Low weight (1.4 g/cm³)
- Excellent high frequency properties (ϵ_R = 2.9, tan θ = 0.0025)
- For multilayer one homogeneous material (no adhesives needed)
- polycondensation of 4-hydroxybenzoic acid and 6hydroxynaphthalene-2-carboxylic acid

8

Permeability of polymers for water vapor

WATER VAPOR TRANSMISSION RATE

Layer	Total thickness (μm)	WVTR (g/(m2/Day))	Remark
Parylene C (Rerference 1)	30-35	0.6	
Polyimide (Kapton) (Rerference 2)	80/35*	3.9/5.5*	Values for 35µm extrapolated, indicated with a *.
LCP (Dycoplast) (single layer LCP sheet)	50/35*	<0.01	Values for 35µm extrapolated, indicated with a *. Sensitivity limit reached for WVTR
ource: Fraunhofer IZ	M		

 Electrode Coating
 Water ingress can cause electrochemical corrosion / resolution of trace material and delamination of layers

 Substrate – PI, Si, LCP
 Water ingress can deteriorate impedance and longterm functionality

Soak test at elevated temperature

Soaking Liquid	Temperature	Duration
Saline solution	67, 77 °C	> 18 months
Sulphuric acid	50 °C	> 12 months
Hydrogen peroxide	67 °C	> 6 months

Soak test in liquids at elevated temperature

Test structure: Interdigitated capacitor for electrochemical impedance spectroscopy

Soak Test

Electrochemical Impedance Spectroscopy (EIS)

Embedded Inter-Digitated-Capacitor (IDC)

Bode Plots Impedance $10^{12} \Omega \dots 10^4 \Omega$ Frequency 10⁻² Hz ... 10⁵ Hz

09-09 10-02 10-25 DYCONEX

102

103

104

Source: Measurements done by Salvia Bioelectronics

All rights reserved by DYCONEX. Unless duly approved in writing by authorized

an MST company

Encapsulation for miniaturized electronic modules

Rigid substrate assembled with wirebonded ASIC and epoxy overmolding

Substrate assembled with SMT components encapsulated with conformal coating: Parylene, multi-layered with ALD (Al₂O₃/HfO₂)

LCP Substrate assembled with SMT components fully encapsulated with LCP

Versatile Concept for Subcutaneously Implanted Medical Devices

Substrate with inner layer artwork

19 17.09.2021 Biocompatible LCP Substrate Technology

Integration with injection molded parts

Mikrofluidic parts for sensing

0.1 mm

Surface of LCP Substrate

Functionalization for electrochemical sensors

Micro-Dispensing

Ag/AgCl Paste on pure gold / platinum pad

Thank you for your attention

Contact: Eckardt.Bihler@mst.com

All rights reserved by DYCONEX. Unless duly approved in writing by authorized DYCONEX personnel, any dissemination, in full or in parts, is strictly prohibited.

23

Flex-to-flex interconnect bonding

Micro assembly technique

- Miniaturized flex-to-flex interconnect
- Zero resistance in channel high impedance between channels
- Fully encapsulated against water ingress
- Extension of maximum cable length up to more than 2 m
- Local applied heat pulse under pressure melts LCP and seals contacts
- Pull strength 20 N/mm same as lead body
- No signal attenuation at interconnect (measured up to 10 GHz)

Polymer Material Properties

	Copper Film	PI Film	LCP Film	TPU Film	Silicone Rubber
Melting Temperature [°C]	1′085	None	285-330	220	none
Density [g/cm3]	8.9	1.4	1.4	1.2	1.0
Ultimate Tensile Strength [MPa] @ max. Elongation	280 @ 8%	231 @ 72%	282 @ 4%	40 @ 400%	3 @ 600%
Young's Modulus [MPa] at 23°C	75′000	2′500	4′000	150	0.5-2
Coefficient of Thermal Expansion (CTE) [ppm]	17	20	18	150	900
Thermal Conductivity [W/m*K]	390	0.12	0.2	0.19	0.15
Electric Volume Resistance [Ω*cm] at 23°C	1.7 E-6	1 E17	1 E18	1 E11-E13	1 E15

