Scuola universitaria professionale della Svizzera italiana Dipartimento tecnologie innovative Istituto CIM per la sostenibilità nell'innovazione

SUPSI

Sustainable educational toys, and plastics for zero emission

Prof. Andrea Castrovinci Cercatore, PhD Head of Polymer Engineering Laboratory

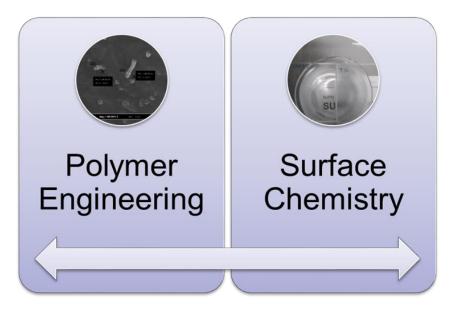
Institute of Mechanical Engineering and Materials Technology Department of Innovative Technologies University of Applied Sciences and Arts of Southern Switzerland Polo universitario Lugano, Campus Est Via la Santa 1 CH-6962 Viganello

Summary

- A short introduction of the Polymer Engineering Laboratory
- The project ξύ (xi): a sustainable material
- Plastic for ZERO Emission Innovation Booster

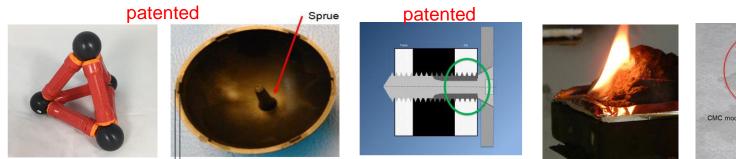
Summary

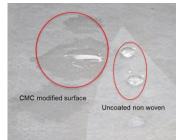
- A short introduction of the Polymer Engineering Laboratory
- The project ξύ (*xi*): a sustainable material
- Plastic for ZERO Emission Innovation Booster


Institute of Mechanical Engineering and Materials Technology (MEMTI)

Department of Innovative Technologies (DTI)

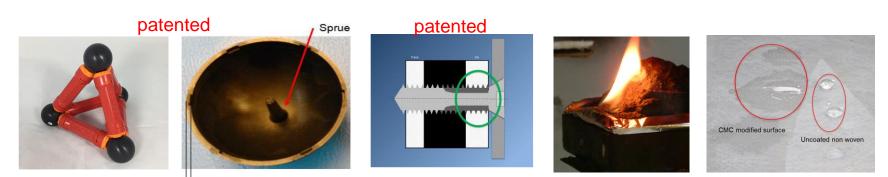
University of Applied Sciences and Arts of Southern Switzerland





≅2mm

Applied R&D pillars:


- polymer / composite engineering
- functional nano-coating based on waterborne polymeric solutions

TOPICS

- polymer degradations and stabilisation
- flame retardandancy
- thermal/electro/magnetic properties
- tailor-made compounds
- polymer for biomedical application

Innosuisse & Mandate: In the last 5 we have been managing R&D projects for a value of more than 6'500'000.- CHF:

Project Name	Code	Years	
Sistema con auto-apprendimento per la ricerca automatica di fibre di amianto tramite microscopia a scansione elettronica	Innosuisse 103.819 IP-ICT	2023-2024	
Fluorine-free "layer by layer" nanocoating for a new generation of omniphobic textiles	Innosuisse 55540.1 IP-ENG	2022-2023	
A new generation of drug-eluting wound dressings with tunable release kinetics of combinations of active compounds through layer-by-layer nanoassembly	Innosuisse 46183.1 IP-LS	2020-2021	
Nanocoating idrofobo e senza fluoro per sci	Innocheque 48160.1 INNO- ENG	2021-2021	
XI	Innosuisse 47891.1 IP-ENG	2020-2021	
Layer by layer technology for the prevention of microbiological growth on immovable Cultural Heritage	SUPSI Strategic R&D Funding	2020	
Modeling and Amelioration of micronization process in spiral jet mills controlling the Caking pHenomenon Ind. Partner: JET PHARMA	Innosuisse 37766.1 IP-ENG	2019-2022	
Layer by Layer nano-assembly approach for manufacturing hydrophilic nonwoven for surgical drapes Ind Partner: EXTEN SA	Innosuisse 32557.1 IP-ENG	2019-2020	

The Polymer Engineering Laboratory staff

Andrea Castrovinci, PhD

Professor – Head of IMP

Anna Rita De Corso, Master Marco Spaggiari, Master Alessandro De Carolis, Master Lizeth Betancourt Gabriele Campi

Marco Selva

Senior Researcher – Nanocoating Researcher – Polymer engineering Researcher – Specialist Researcher Assistant Assistant (MSE student) Assistant (MSE student)

The team counts on highly qualified researchers. The working experiences span from 6 up to 20 years on R&D in the academia and private sector.

Polymer Engineering Lab Partners (a selection of):

SIP swiss Industrial Promotion sa

Click in the LOGOs to follow the links

Polymer Engineering Lab Partners (a selection of):

swiss plasticscluster

10

SWITZERLAND

PLASTICS FOR TERRO EMISSION

Summary

- A short introduction of the Polymer Engineering Laboratory
- The project ξύ (xi): a sustainable material
- Plastic for ZERO Emission Innovation Booster

University of Applied Sciences and Arts of Southern Switzerland

SUPSI

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency

Background of the project: GEOMAG needs

- GEOMAG "[...] responsible for the future of the environment that we are living in, [...] we run a responsible and sustainable business."
- The premium toys market is very reactive to more sustainable products

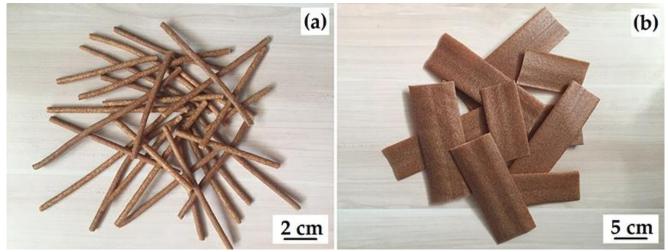
Background of the project: GEOMAG needs

GEOMAG" +

- GEOMAG wanted to develop polymer compounds from sustainable raw materials:
 - Recycled polymers
 - Waste woods
 - Renewable additives
 - EN70 compliance

University of Applied Sciences and Arts of Southern Switzerland

SUPSI


Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency

What are the challenges / What is Innovative?

Wood compounds are not new nor innovative di per se

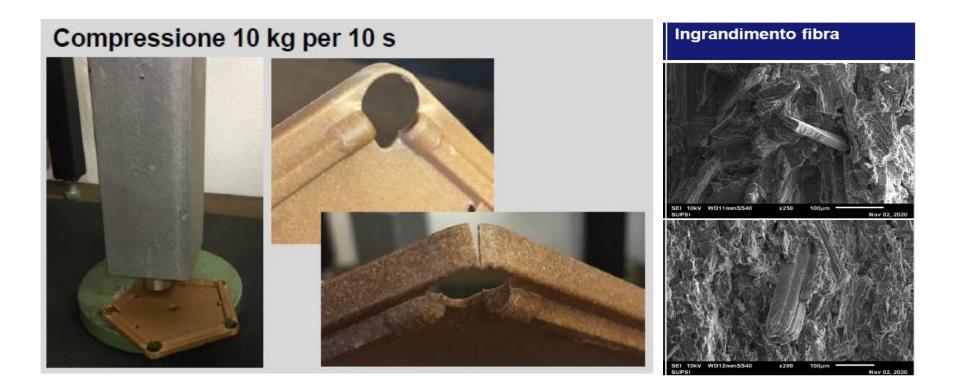
Picture from: Wood-Reinforced Polymer Composites, Anil Akdogan and Ali Serdar Vanli In Wood in Civil Engineering, Ed. Giovanna Concu, 2017, ISBN 978-953-51-2986-8

What are the challenges / What is Innovative?

Compliancy with EN70 having a exploitable material:

- Recycled Polypropylene matrix (impurities, quality variability)
- Waste woods as raw material (impurities, quality variability)
- No Processing Aids / Compatibilizers (e.g. maleic grafted PP)
- MAX filler load vs Preserving good processability
- MAX filler load vs Excellent mechanical properties
- MAX filler load vs Excellent touch and feel features
- MAX filler load vs Aesthetic features

What are the challenges / What is Innovative?


• MAX filler load vs Preserving good processability

Prodotto/Progetto	Miscela: XI02M		XI				Data	Data			
Operatore/i	Marco Spaggiari										
Consegna (kg)	12										
Componenti	ρ _{app} .[g/l] D	osatore	P _{det} . [kg	/h]	Posizione	wt%	kg	Lotto			
	534				BM			n/a			
	169				SF			n/a			
egenda dosatori: DO1 egenda Posizione:BM =				satore	3.						
Estrusione:	ora inizio: 9:45								ilevamenti successivi: cire		
				1			ALORI EFFETTIVI (rilevamenti)				
		UM	SET		I II	11		V	_		
Essiccazione	NO	°C	-	-	-	-	-	-	_		
	NO	h	-	-	-	-	-	-	_		
Pre-riscaldamento	NO	°C	-	-	-	-	-	-	-		
	NO	h	-	-	-	-	-	-			
	Portata	kg/h		1T							
Deservi	DO1	kg/h		1Ē					_		
Dosaggio	DO2	kg/h									
	DO3	kg/h	-	-	-	-	-	-	_		
	Z1	°C							-		
Temperature / pressione	Z2	°C							_		
	Z3	°C							_		
	Z4	°C							_		
	Z5	°C									
	Z6	°C									
	Z7	°C									
	Z8	°C									
	Melt	°C bar	\sim	-							
			\sim								
	VP	rpm	400								
Estrusore	05	A %		╷┛							
	SF	rpm	200	1							
Dosatori	DO1 DO2	%	\geq								
	DO2 DO3	%	\ll	>							
Legenda: VP = vi	ite principale; SF = s		nm = rotazi	oni al r	ninuto: A = ass	- orbimento	-	-			
Vuoto	ON	-	ON	-	initiato, 71 – dot	orbintonito.			-		
	OFF	-	-	-							
	Cilindro traino	rpm		i 🗖					=		
Trituratore	Taglio (motore										
Post-essiccazione	SI) °C		T	-	-	-	-	=		
	SI				-	-	-	1			

What are the challenges / What is Innovative?

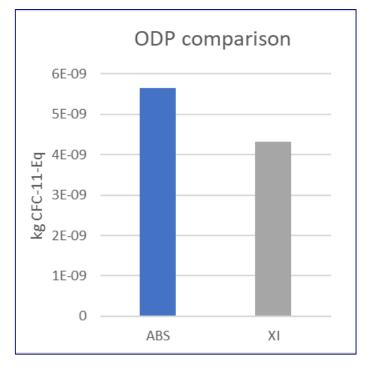
• MAX filler load vs Excellent mechanical properties

What are the challenges / What is Innovative?

- MAX filler load vs Excellent touch and feel features
- MAX filler load vs Aesthetic features

What we achieved?

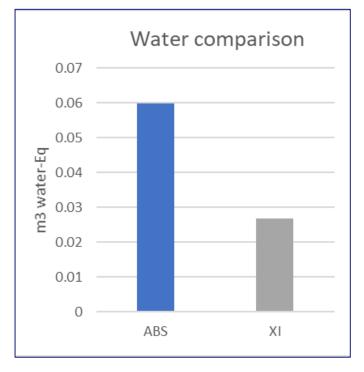
- A new class of polymeric compounds EN70 certified:
 - Recycled polymer matrix
 - Waste wood filled
 - Renewable additives (e.g. processing aids / compatibilizers)


How...

- A close control on the raw material (e.g. waste wood supply chain)
- An in deep understating of the process VS fillers/additives VS material microstructure VS material properties
- A sustainable alternative to SoA processing aids and compatibilizer

What we achieved?

• An LCA* perspective


*NOTE: LCA has been performed by Laura Bauce and Alessandro Fontana Sustainable Production Systems Laboratory Institute of Systems and Technologies for Sustainable Production Department of Innovative Technologies

University of Applied Sciences and Arts of Southern Switzerland

- Ozone Depletion Potential (ODP) expressed as kg R11 eq.

What we achieved?

• An LCA* perspective

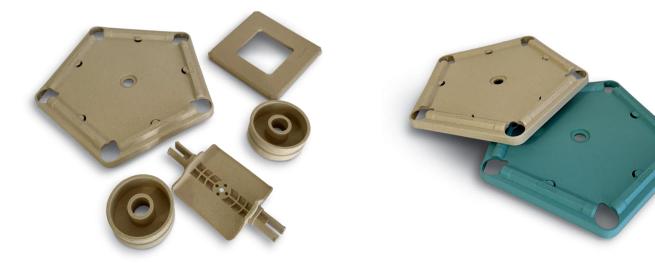

*NOTE: LCA has been performed by Laura Bauce and Alessandro Fontana Sustainable Production Systems Laboratory Institute of Systems and Technologies for Sustainable Production Department of Innovative Technologies

University of Applied Sciences and Arts of Southern Switzerland

- Dissipated Water expressed as m3 water eq.

What we achieved?

• An LCA* perspective


*NOTE: LCA has been performed by Laura Bauce and Alessandro Fontana Sustainable Production Systems Laboratory Institute of Systems and Technologies for Sustainable Production Department of Innovative Technologies

University of Applied Sciences and Arts of Southern Switzerland

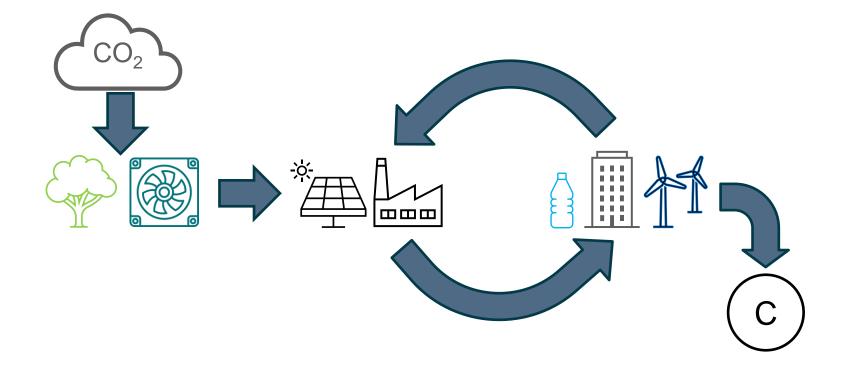
- Global Warming Potential (GWP) expressed as kg CO2 eq.

Next Steps:

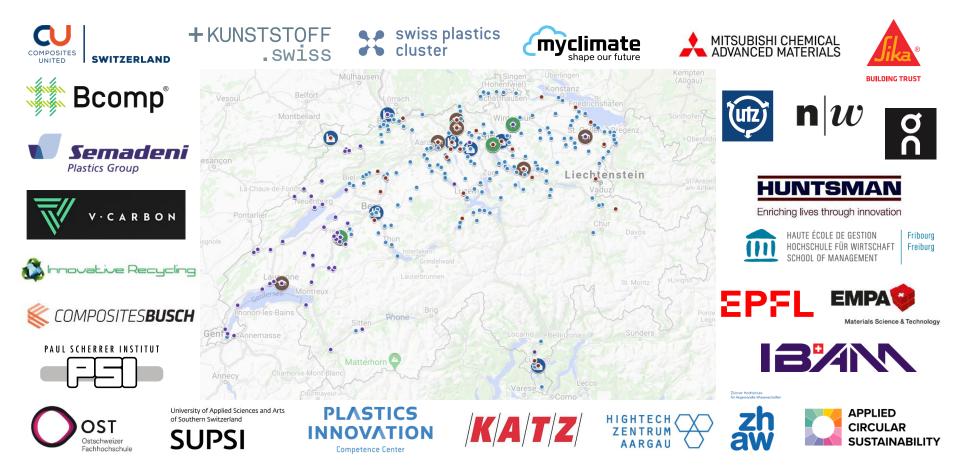
- Patent Pending
- Exploring other applications

Summary

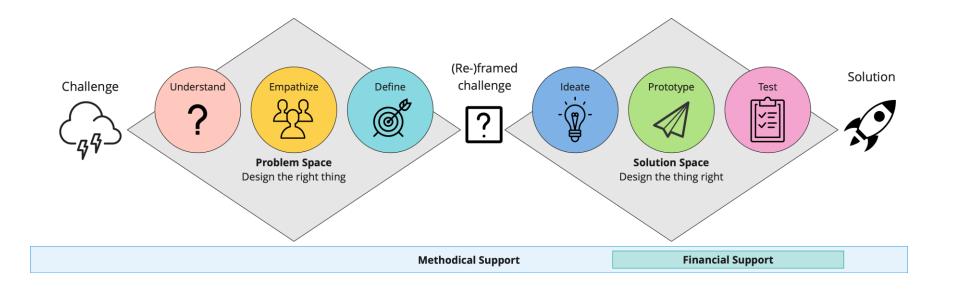
- A short introduction of the Polymer Engineering Laboratory
- The project ξύ (*xi*): a sustainable material
- Plastic for ZERO Emission Innovation Booster

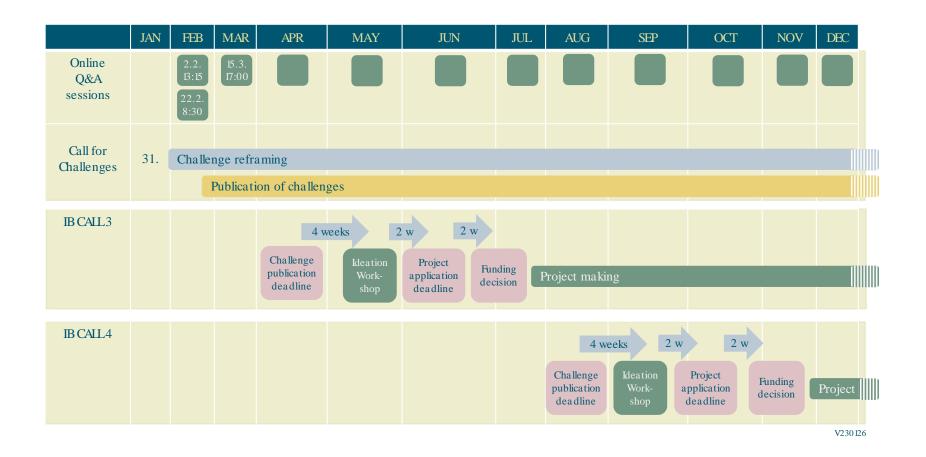

PLASTICS FOR **ZERC EMISSION**

2 February 2023


INNOVATION BOOSTER PLASTICS FOR ZERO EMISSION

- Financed by Innosuisse for 2022 to 2025
- Two calls for projects per year
- 10 projects financed per year
- Seed money CHF 25'000 (plus 2'500 co-funding) per project
- Methodical support, events and networking support as integral part of the Innovation Booster
- Leading House: Composites United Switzerland


FROM CLIMATE-NEUTRAL PRODUCTION TO NEGATIVE EMISSION MATERIALS


CONSORTIUM AND COMMUNITY OF INTEREST

OUR INNOVATION BOOSTER PROCESS

SCHEDULE 2023

INVOLVEMENT OF IMPLEMENTATION PARTNER

- Financial contribution (only if project is funded)
 - CHF 2500 to the project
 - CHF 2500 to the Innovation Booster Plastics for Zero Emission Leading House
- Implementation partner needs to be a Swiss organisation and/or projects needs to add socio-economic value for Switzerland
- Seed money cannot be used to cover internal costs of implementation partner
- Sufficient time needs to be allocated to participate in design thinking process and workshops

PROJECT REQUIREMENTS

- At least one research partner and one implementation partner
- Evaluation criteria for granting seed money:
 - Thematic focus
 - Degree of innovation
 - Effect (Including CO2 reduction potential)
 - Methodical quality
 - Gender and diversity
- Participation in workshops and annual conference
- Methodical support in prototype/test phase has to be paid from seed money (tbc)

QUESTIONS?

Stève Mérillat info@plastics4zeroemission.ch 052 520 74 00

Latest updates and newsletter subscription <u>https://plastics4zeroemission.ch</u>

Contacts

Prof. Andrea Castrovinci, PhD Head of Polymer Engineering Laboratory SUPSI DTI MEMTi Polo universitario Lugano Campus Est Via la Santa 1 CH-6962 Viganello How to reach us

Phone: 0041 (0)58 666 66 34 Fax: 0041 (0)58 666 66 20 Skype: andrea.castrovinci e-mail: andrea.castrovinci@supsi.ch website: <u>http://www.supsi.ch/memti_en.html</u>

Linkedin: <u>https://www.linkedin.com/feed/?trk=guest_homepage-basic_nav-header-signin</u>

https://www.linkedin.com/showcase/19189529/admin/

Thank you for your kind attention

