

Wasserstoff für die globale Power-to-X Wirtschaft

Christian Breyer LUT University 15. ExpertInnengespräche Power-to-X, OST Rapperwil, April 9, 2024

Key Drivers: Availability, Electrification, Cost

@Christi

* The efficiency of internal-combustion engines in other applications (e.g. maritime transport, engine-driven power plants) can exceed 50 %.

Key insights:

- Solar energy resource availability is 1000x larger than the global demand
- Direct electricity use is highly efficient
- Renewables costs have declined steeply and continued: solar PV, wind power, batteries, electrolyser, and others
- Combination of these three major drivers leads to massive uptake of solar PV complemented by wind

: Perez R. and Perez M., 2009. A fundamental look on energy reserves for the planet. The IEA SHC Solar Update, Volume 50 Brown, Breyer et al., 2018., Renewable and Sustainable Energy Reviews, 92, 834-847

IPCC, 2020. 6th Assessment Report WG III

Power Market Development: 2007 - 2021

Empiric trends:

Electricity supply dominated by PV and wind power

Generation mix will adapt to the mix of new installations, year by year

Fossil-nuclear generation will be increasingly irrelevant

Solar PV grew by +30% YoY in 2022, and +70% YoY in 2023 (note: newly PV electricity > wind)

PV is outside any historic experience

Key insights:

- Solar PV and wind power dominate new installations, with clear growth trends for PV
- Hydropower share declines, a consequence of overall capacity rise, and sustainability limits
- Bioenergy (incl. waste) remain on a constant low share
- New coal plants are close to fade out
- New gas plants decline, with very high gas prices pushing them towards peaking operation
- Nuclear is close to be negligible, the heated debate about new nuclear lacks empirical facts

Share of global capacity additions by technology

Global: PV & Wind Share in 100% RE Studies

LUT Energy System Transition Model (LUT-ESTM)

recent reports

Key features:

- full hourly resolution, applied in global-local studies, comprising about 150 technologies
- used for several major reports, in about 75 scientific studies, published on all levels, including Nature
- strong consideration on all kinds of Power-to-X (heat, fuels, chemicals, materials, freshwater, CO₂, CDR, forests)

Wasserstoff für die globale PtX Wirtschaft Christian Brever ► christian.brever@lut.fi

source: Bogdanov, Breyer et al., 2021. Full energy sector transition towards 100% renewable energy supply: integrating power, heat, transport and industry sectors including desalination, Applied Energy, 283, 116273

Power-to-X Economy as new characteristic Term

- Zero CO₂ emission low-cost energy system is based on electricity
- Core characteristic of energy in future: Power-to-X Economy

- Primary energy supply from renewable electricity: mainly PV plus wind power
- Direct electrification wherever possible: electric vehicles, heat pumps, desalination, etc.
- Indirect electrification for e-fuels (marine, aviation), e-chemicals, e-steel; power-to-hydrogen-to-X

Europe: Highly ambitious Energy-Industry Transition

- Methods: <u>LUT-ESTM</u>, 1-h, 20-regions, <u>full sector coupling</u>, cost-optimised
- First energy-industry transition to 100% RE in Europe in 1-h & multi-regions
- Industry: cement, steel, chemicals, aluminium, pulp & paper, other industries
- Energy-industry costs remain roughly stable
- Scenario definition: zero CO₂ emissions in 2040
- Massive expansion of electricity would be required
- e-fuels & e-chemicals ensure stable operation of transport & industry
- Nuclear: by scenario default phased out by 2040; it is NO critical system component; finally countries will decide how to proceed
- What's respected:
 - 1.5 °C target & biodiversity & cost effectiveness & air pollution phase-out
- renewal of European energy-industry system & jobs growth
- Why society should not go for such an option?

Hourly Operation and Balancing

Key insights:

- Week of most renewables supply (spring) and least renewables supply (winter) is visualised
- A 100% renewables-based and fully integrated energy system in 2050 will function without fail every day of the year: Even in the dark winter days the region easily copes with energy demand
- Key balancing components are electrolysers (Power-to-H₂-to-Fuels) that convert electricity to hydrogen, when electricity is available, but drastically reduce their utilisation in times of low electricity availability

Electrons-to-Molecules as a major piece of Power-to-X Economy

Outside the scope of this study

H₂ Storage in recent National Studies

Iberia (top left), Finland (top, right) Puerto Rico (bottom left) Hawaii (bottom right)

Days of a year

urs of a day (UTC +0) 6 7 51

of a day (UTC -4)

9

Key insights:

- Most important, the used energy system model is identical and techno-economic assumptions are identical
- Differences originate from the structure of resources and demand for energy services
- H₂ storage can be:
 - buffer storage (case Finland)
 - seasonal storage (case Hawaii)
 - daily storage with impact of wind (case Puerto Rico)
 - daily, seasonal, buffer in one (case lberia)
- H₂ storage is quite context and location dependent

source:

ElSayed et al., 2023. 2023, On the full potential and role of different solar photovoltaic system technologies in the Iberian energy transition, EU PVSEC, Lisbon

- Satymov et al., 2024. Energy and industry transition to carbon-neutrality in Nordic conditions via local renewable sources, electrification, sector coupling and Power-to-X. to be submitted
- Breyer et al., 2023. Role of solar PV for a sustainable energy system in Puerto Rico in the context of the entire Caribbean featuring the value of offshore floating systems, IEEE Journal of Photovoltaics
- Lopez et al., 2023. Role of Storage in the Power-to-X Economy: The Case of Hawaii, 17th IRES, Aachen; submitted

Days of a year

Global: Hydrogen Demand in a Power-to-X Economy

Table 1. Electricity and hydrogen demand across the energy-industry system in 2030, 2040, and 2050 for energy uses, steelmaking, and chemical feedstocks. The hydrogen demand is linked to electrolyser capacity demand. The hydrogen demand is induced by H₂-based products demand and leads to CO₂ as raw material demand for e-hydrocarbons. Lower heating values (LHV) are used, and electrolyser efficiencies are aligned to [60] for LHV.

		2030	2040	2050	ref
Electricity demand for e	lectrolysis				
Energy system	TWhel	548	17,069	48,908	[49]
Steelmaking	TWhel	2,718	5,621	6,284	[58]
Chemical feedstocks	TWhel	2,808	17,319	33,031	[59]
Total	TWhel	6,074	40,009	88,223	
Hydrogen demand					
Energy system	TWh _{H2,LHV}	356	11,529	34,244	[49]
Steelmaking	TWh _{H2,LHV}	1,755	3,772	4,371	[58]
Chemical feedstocks	TWh _{H2,LHV}	1,825	11,690	23,122	[59]
Total	TWh _{H2,LHV}	3,936	26,991	61,737	
Electrolyser capacity					
Energy system	GW _{H2,LHV}	119	2,990	9,252	[49]
Steelmaking ¹	GW _{H2,LHV}	501	1,078	1,249	[58]
Chemical feedstocks	GW _{H2,LHV}	613	3,112	6,208	[59]
Total	GW _{H2,LHV}	1,233	7,180	16,709	
H2-based products dema	and				
H2-based products dema e-Hydrogen	TWh _{H2,LHV}	2,051	6,274	11,963	[49,58,59]
e-Hydrogen e-Methane ²	TWh _{H2,LHV} TWh _{CH4,LHV}	2,051 78	6,274 778	11,963 7,419	[49,58,59] [49]
H2-based products dema e-Hydrogen e-Methane ² e-FTL fuels	TWh _{H2,LHV} TWh _{CH4,LHV} TWh _{FTL,LHV}	2,051 78 2	6,274 778 4,502	11,963 7,419 9,442	[49,58,59] [49] [49]
H2-based products dema e-Hydrogen e-Methane ² e-FTL fuels e-FTL naphtha	TWh _{H2,LHV} TWh _{CH4,LHV} TWh _{FTL,LHV} TWh _{FTL,LHV}	2,051 78 2 1	6,274 778 4,502 1,125	11,963 7,419 9,442 2,360	[49,58,59] [49] [49] [49]
H2-based products dema e-Hydrogen e-Methane ² e-FTL fuels e-FTL naphtha e-Ammonia	TWh _{H2,LHV} TWh _{CH4,LHV} TWh _{FTL,LHV} TWh _{FTL,LHV} TWh _{NH3,LHV}	2,051 78 2 1 176	6,274 778 4,502 1,125 828	11,963 7,419 9,442 2,360 1,625	[49,58,59] [49] [49] [49] [59]
H2-based products dema e-Hydrogen e-Methane ² e-FTL fuels e-FTL naphtha e-Ammonia e-Methanol	TWh _{H2,LHV} TWh _{CH4,LHV} TWh _{FTL,LHV} TWh _{FTL,LHV} TWh _{NH3,LHV} TWh _{MeOH,LHV}	2,051 78 2 1 176 2,193	6,274 778 4,502 1,125 828 9,495	11,963 7,419 9,442 2,360 1,625 15,402	[49,58,59] [49] [49] [49] [59] [59]
H2-based products dema e-Hydrogen e-Methane ² e-FTL fuels e-FTL naphtha e-Ammonia e-Methanol Total	TWh _{H2,LHV} TWh _{CH4,LHV} TWh _{FTL,LHV} TWh _{FTL,LHV} TWh _{NH3,LHV} TWh _{MeOH,LHV}	2,051 78 2 1 176 2,193 4,492	6,274 778 4,502 1,125 828 9,495 21,877	11,963 7,419 9,442 2,360 1,625 15,402 48,384	[49,58,59] [49] [49] [49] [59] [59]
H2-based products dema e-Hydrogen e-Methane ² e-FTL fuels e-FTL naphtha e-Ammonia e-Methanol Total CO ₂ raw material dema	TWh _{H2,LHV} TWh _{CH4,LHV} TWh _{FTL,LHV} TWh _{FTL,LHV} TWh _{NH3,LHV} TWh _{M40} H,LHV TWh _{fine} LHV nd	2,051 78 2 1 176 2,193 4,492	6,274 778 4,502 1,125 828 9,495 21,877	11,963 7,419 9,442 2,360 1,625 15,402 48,384	[49,58,59] [49] [49] [49] [59] [59]
H2-based products dema e-Hydrogen e-Methane ² e-FTL fuels e-FTL naphtha e-Ammonia e-Methanol Total CO ₂ raw material dema e-Methane	TWh _{H2,LHV} TWh _{CH4,LHV} TWh _{FTL,LHV} TWh _{FTL,LHV} TWh _{NH3,LHV} TWh _{MsOH,LHV} TWh _{fish} LHV nd MtCO ₂	2,051 78 2 1 176 2,193 4,492 14	6,274 778 4,502 1,125 828 9,495 21,877 153	11,963 7,419 9,442 2,360 1,625 15,402 48,384 1,458	[49,58,59] [49] [49] [49] [59] [59] [59]
H2-based products dema e-Hydrogen e-Methane ² e-FTL fuels e-FTL naphtha e-Ammonia e-Methanol Total CO ₂ raw material dema e-Methane e-FTL fuels	TWh _{H2,LHV} TWh _{CH4,LHV} TWh _{FTL,LHV} TWh _{FTL,LHV} TWh _{NH3,LHV} TWh _{MaOH,LHV} TWh _{fmal,LHV} nd MtCO ₂ MtCO ₂	2,051 78 2 1 176 2,193 4,492 14 1	6,274 778 4,502 1,125 828 9,495 21,877 153 1,373	11,963 7,419 9,442 2,360 1,625 15,402 48,384 1,458 2,879	[49,58,59] [49] [49] [49] [59] [59] [49] [49]
H2-based products dema e-Hydrogen e-Methane ² e-FTL fuels e-FTL naphtha e-Ammonia e-Methanol Total CO ₂ raw material dema e-Methane e-FTL fuels e-FTL naphtha	TWh _{H2,LHV} TWh _{CH4,LHV} TWh _{FTL,LHV} TWh _{FTL,LHV} TWh _{MaOH,LHV} TWh _{MaOH,LHV} TWh _{final,LHV} nd MtCO ₂ MtCO ₂	2,051 78 2 1 176 2,193 4,492 14 1 0	6,274 778 4,502 1,125 828 9,495 21,877 153 1,373 343	11,963 7,419 9,442 2,360 1,625 15,402 48,384 1,458 2,879 720	[49,58,59] [49] [49] [59] [59] [49] [49] [49] [49]
H2-based products dema e-Hydrogen e-Methane ² e-FTL fuels e-FTL naphtha e-Ammonia e-Methanol Total CO ₂ raw material dema e-Methane e-FTL fuels e-FTL naphtha e-Methanol	TWh _{H2,LHV} TWh _{FTL,LHV} TWh _{FTL,LHV} TWh _{FTL,LHV} TWh _{MaOH,LHV} TWh _{fineLLHV} TWh _{fineLLHV} nd MtCO ₂ MtCO ₂ MtCO ₂	2,051 78 2 1 176 2,193 4,492 14 1 0 579	6,274 778 4,502 1,125 828 9,495 21,877 153 1,373 343 2,188	11,963 7,419 9,442 2,360 1,625 15,402 48,384 1,458 2,879 720 4,068	[49,58,59] [49] [49] [59] [59] [49] [49] [49] [49] [59]

Wasserstoff für die globale PtX Wirtschaft Christian Brever ► christian.brever@lut.fi

10

🍠 @ChristianOnRE

- Hydrogen is a subset of the PtX Economy
- Main demand: e-fuels (marine, aviation), echemicals, e-steel – ammonia, methanol kerosene jet fuel
- Primary energy supply from renewable electricity: mainly PV plus wind power
- Direct electrification wherever possible: electric vehicles, heat pumps, desalination, etc.
- Indirect electrification for e-fuels (marine, aviation), e-chemicals, e-steel;
- Most routes are power-to-hydrogen-to-X
- Numbers shown here represent the highest ever published H₂ and H₂-to-X demand

Source:

Breyer, Lopez, et al., 2024. The role of electricity-based hydrogen in the emerging Power-to-X Economy, International J of Hydrogen Energy Galimova et al., 2023. Global trading of renewable electricity-based fuels and chemicals to enhance the energy transition across all sectors towards sustainability, RSER

Levelised Cost of Electricity for PV and Wind

- Low-cost electricity is a pillar of e-fuels
- Single-axis tracking PV provides lower LCOE at 20-30% higher FLh, compared to fixed tilted PV
- The least PV LCOE (in Atacama Desert) declines from about 12 to 7 €/MWh in 2030 to 2050, respectively.
- More than 10 real projects already announced for LCOE below 20 €/MWh.
- Low-cost PV would be accessible worldwide by 2030 and beyond.
- The least wind LCOE (in Patagonia) declines from about 18 to 15 €/MWh in 2030 to 2050, respectively

Levelised Cost of Hydrogen (GH2, LH2)

- By 2030, baseload GH₂ could be supplied for 40–60 €/MWh_{H2,HHV} in all continents.
- The production costs at best sites could decline to 20–30 €/MWh_{H2,HHV} by 2050.
- Baseload GH₂ production potential is 2 to 12 TWh_{H2,HHV} per 1000 km² based on the location.
- Generation potential is higher at PV-dominated regions, due to higher installation capacity per area.
- By 2030, LH₂ could be produced for 70–85 €/MWh_{LH2,HHV} in all continents.
- The production costs at best sites could decline to 35–40 €/MWh_{LH2,HHV} by 2050.

Levelised Cost of e-Kerosene

- By 2030, e-kerosene could be produced for 120–150
 €/MWh_{FTL} (1.1–1.37 €/I) in all continents.
- The production costs at best sites could decline to 65–75 €/MWh_{FTL} (0.59–0.69 €/I) by 2050.
- Patagonia loses its position as a least cost site to sunny sites beyond 2030.

Global Cost Curves pre-/ post-trading

- High cost regions (blue) benefit from imports from low-cost regions (red)
- Three main groups of countries: importers, exporters, self-sufficient
- High cost countries can reduce their costs, partly substantially
- Global average cost do not benefit much, but for high cost countries cost decline significantly

LCOF e-FTL fuels pre-trading 2050 [€/MWh]

14

source: <u>Galimova et al., 2023. Global trading of renewable electricity-</u> based fuels and chemicals to enhance the energy transition across all sectors towards sustainability, RSER

CO₂ as Raw Material for e-Fuels Demand

Key insights:

- e-fuels demand in order of 40,000 TWh
- key e-fuels are e-methanol and e-kerosene, maybe some emethane
- largest demand sectors: chemicals, transport (aviation, marine), and maybe high-temperature industrial process heat
- hydrocarbon-based e-fuels require CO₂ as raw material
- sustainable or unavoidable point sources are usable, such as waste incinerators, pulp and paper mills, maybe cement mills
- Iargest source for CO₂ as raw material will be direct air capture

Global demand analysis for carbon dioxide as raw material from key industrial sources and direct air capture to produce renewable electricity-based fuels and chemicals

Tanus Galimova', Manuih Ram, Dmitrii Boqdanov, Mahdi Fashih, Giavash Khahili Ashih Gulagi, Hannu Karjunen, Theophilus Nii Odai Mensah, Christian Breyer Jir Diweng, Figeneona, Data Marticul Hirdow, Atternationa (Alexandro), Atternational (Alexandro), Atternational

A R TI C L E I N F O Heading Mitore Zales Mi Zowenki Genes deadle faith scenario Carlos diadle scillation Bacter-Jone Bacter-Jone Bacter-Jone Bacter-Jone

Substitution of the servers hand hole domained global energy errors to see of the log galaxies for descenting download one mitigate classical, Balay moderation in the out of the alpharomizet, and global and the subsidget models an equipal transition of the power and none regional of the transport source to sustatiable download one mitigate classical and the second and none regional of the transport source to sustatiable download one entropy on the second and the second and the second and the second download one entropy on the second download one region of the transport source to a subside the order sequence of source and second download in the log balance and the second down one second for the second download download download download download the second download one second of the formersh. Califord and experiment on addresses, The second download download download and the second download download

Introduction

Classes charge is one of the proceed theory takes howavely to finding with $\zeta_{\rm c}$ foctors the two contexp of cargo supports respects to take to the softward of cargo support to take the foctor of the softward of the so

* Corresponding author. E-mail address: tansu.galimova@lut.fi (

n://doi.org/10.1016/j.jclepro.2022.133920

Received 21 February 2022; Received in revised form 16 August 2022; Accepted 28 August 2022 Available online 1 September 2022

Wasserstoff für die globale PtX Wirtschaft Christian Brever ► christian.brever@lut.fi

15

🥑 @ChristianOnRE

Role of CO₂ Direct Air Capture

source: Fasihi M., et al., 2019. Journal of Cleaner Production, 224, 957-980; Breyer et al., 2020. Mitigation and Adaptation Strategies for Global Change, 25, 43-65; Breyer et al., 2019. Joule, 3, 2053-2057

- Area: sustainable CO₂ supply is limited by bio-CO₂ (wastes limited, energy crops lack area)
- Costs: views towards 2050 deviate strongly, between 50-500 €/tCO₂, while 50-100 €/tCO₂ may be the right range
- Share in e-kerosene: the DAC cost in the fuel may be in the range of 13-17%

Figure 4 Net area required to produce 1000 kilotonnes of kerosene per year from different primary energy sources

Figure 32 Levelised cost of fuel in selected locations from 2030 to 2050. The locations are the US for California, Southern Spain, Argentina Patagonia and Chile Atacama.

16

@ChristianOnRE

Summary & Outlook

Key elements of the arising energy-industry system are:

- Comprehensive electrification (direct, indirect) of all demands
- Dominating source of primary energy: solar PV and wind power complemented by others
- Hydrogen as a subset of the Power-to-X Economy

Role of flexibility:

- Flexibility is key in the Power-to-X Economy, and storage complements other flexibility options
- Key flexibilities: supply complementarity, grids, demand response, curtailment, and storage
- Hydrogen buffer: indirect regulation of the power sector, BUT, almost NO H₂-to-electricity need
- e-fuels & e-chemicals: almost baseload synthesis, thus, some storage for buffering demand

Role of hydrogen:

- Provide solutions when direct electrification is not possible, since the latter is typically more efficient and lower in cost
- Main demand for hydrogen: e-fuels & e-chemicals (e-ammonia, e-methanol, e-kerosene jet fuel, e-methane, e-hydrogen), e-materials (e-steel, e-carbon fibre)
- Hydrogen as an essential intermediate energy carrier in power-to-H₂-to-X routes as a subset of the Power-to-X Economy

Thank you for your attention and to the team!

all publications at: <u>www.scopus.com/authid/detail.uri?authorld=39761029000</u> new publications also announced via Twitter: <u>@ChristianOnRE</u>

CO₂ Emissions: how it developed, where to go

Key insights:

- CO₂ emissions are dominated by fossil fuels
- Emissions are at historic record levels
- Emissions have to reach absolute zero
- Carbon budget for 1.5°C (67%) is to be used by 2030
- Carbon budget for 1.5°C (83%) and uncertainty margin was consumed in 2022
- Faster transition and net negative CO₂ emissions are required
- Absolute zero CO₂ emissions around 2040 must be targeted

Europe: Wind & PV Share in 100% RE Studies

- Major reports for public discourse document lack of up-to-date knowledge of consultants
 - McKinsey (20% PV share in 2050), DNV (15%), Navigant (14%); IEA WEO SDS (13%) NZE without regional data
 - Iack of ambition: no 100% RE scenario known, much fossil CCS and nuclear, low levels of electrification
 - oversimplified models: low temporal and spatial resolution, no cost optimisation, low levels of PtX and sector coupling
 - cost assumptions used often violate market trends (too high renewables cost, too low CCS & nuclear costs)

System Outlook – Energy Flows in 2020

Europe - 2020

Global: 100% Renewable Energy System by 2050

CCGT

Methane CHF

Methane DH

Methane IH

Nuclear PF

Electric heating D

Electric heating I

Heat pump DH

Heat pump IH

Liquid hydroger

Steam reforming

Battery prosu

Gas (CH,) storage

Biogas storage Hydrogen storage CO₂ storage

Water electrolys

LNG

Battery

PHES

A-CAES

TES HT

TES DH

CO, DAC

Methanatio

Grids HV

Fischer-Tropsch

OCGT

PV fixed tilted

PV single-axis

PV prosumers

Wind onshore

Wind offshore

CSP SF

ST others

lvdro run-of-riv

lydro reservoir (d

Geothermal electricit

Geothermal heat Di

Biomass solid

Biomass CHR

Biomass DH

Biomass IH Biogas CHF

Biogas digest

Biogas IH

Coal PP hard

Coal CHP

Coal DH

ICE

Oil CHE

Oil DH

Oil IH

Biogas upgrade

Vaste-to-energy CHI

Solar thermal heat

Key insights:

- Low-cost PV-wind-battery-electrolyser-DAC leads to a cost-neutral energy transition towards 2050
- This implies about 63 TW of PV, 8 TW of wind power, 74 TWh_{cap} of battery, 13 TW_{el} of electrolysers by 2050 for the energy system
- This leads to about 3 TW/a of PV, 850 GW_{el} of electrolyser installations in 2040s
- PV contributes 69% of all primary energy
- Massive investments are required, mainly for PV, battery, heat pumps, wind power, electrolysers, PtX

Role of electricity: Primary vs Final Energy

Key insights:

- Electricity emerges to the dominant primary energy source (<5% ► 90%), driven by low-cost and efficiency
- Electricity share in final energy is not structurally changing (22% ► 45%)
- Transition from combustion-based to electron-based society is the fundamental driver, due to efficiency and low-cost
- Power-to-X (heat, fuels, mobility, clean water, refined materials, chemicals) explains the discrepancy of TPED vs TFED
- Electricity becomes challenging in discussions, as primary energy, secondary energy, energy carrier, final energy
- It is NO contradiction to generate electricity and sell molecules, it's just upstream and downstream business