

High T electrolysis (SOE)

June 20th 2023

 École polytechnique fédérale de Lausanne

EPFL Steam electrolysis unit (SOE) in HEPP

- 1. Key of steam electrolysis : reduce electrical input need to split H_2O
- 2. Endo / exo / thermoneutral H_2O splitting
- 3. SOE tests at OST
- 4. Stacks 1801 / 1803 from SolydEra
 - > Performance (IV and efficiencies)
 - Impact of the coupling of electrolysis + methanation
- 5. System integration perspectives
 - \succ Co-electrolysis of steam + CO₂
 - Internal methanation
- 6. Conclusions and outlook

Steam vs water electrolysis

EPFL

SOE context and PtG

- SOE: **steam** input need (= the bottleneck)
- Solution: use waste heat sources and/or heat integration with downstream exothermal fuel synthesis (=> CH₄, CH₃OH, ...)

In addition:

- SOE is reversible (=> SOFC fuel cell for power <u>generation</u>):
 - \rightarrow flexibility of operation
 - \rightarrow lower CAPEX (1 installation for both modes)
 - \rightarrow lower OPEX (high efficiency in both modes PtG, GtP)

SOE in the HEPP project

Van herle / EPFL / GEN

Hocheffiziente Power-to-X Technologie, 20. Juni 2023

EPFL

SOE tests at OST

EPFL SOE 5 kWe prototype unit

- Gas distribution panel : H_2 , steam, CH_4 , formgas H_2/N_2 , N_2 , Air
- Hot BoP to preheat the gases before entering ۰ the electrolyser stack
- Insulated box containing SolydEra G80 stack ٠ $(70 \text{ cells}, 80 \text{ cm}^2) \Rightarrow 90 \text{ V}$ thermoneutral
- Cooling and condensing panel to remove remaining water in the exhaust gas $(=> H_2)$
- Junction box for electrical connections •
- Control rack

The entire unit is enclosed in a ventilated closet equipped with H₂ detectors.

SOE system layout

EPFL SOE tests

Two 5 kWe G80 stacks from SolydEra have been tested (so far) :

- Stack #1801 : <u>used</u> stack. Tested 9-11/2022.
- Stack #1803 : pristine stack. Tested 2-3/2023.

General structure of the testing :

EPFL Challenges and limitations

- Distance Rapperswil \leftarrow \rightarrow Sion does not allow continuous / frequent work
- For safety reasons, someone from EPFL must be on-site when the SOE is running, also overnight
- At least 3 people from EPFL needed on-site during testing weeks to carry out 3 x 8 hours shifts

Cost for travel, hotel, salaries

Limited duration of the experiments (1 week continuous)

Hocheffiziente Power-to-X Technologie, 20. Juni 2023

Results

Stack #1801 (5 kWe) : T, V evolution

Stack #1801: performance

EPFL Stack #1801 (P_{atm}): coupling with the H₂-compressor and methanator (10 bar)

The fuel pressure increases when the SOE is coupled to the compressor/methanator. This increase (and the ΔP between air and fuel side) must be minimized and controlled. The voltage fluctuates during the coupling.

Jan Van Herle

EPFL Stack #1803: T, V evolution

EPFL Stacks #1803, #1801: i-V

Stack 1803 shows a fast voltage increase at relatively low steam conversion (SC).

- \Rightarrow leakage between stack and hot BoP
- \Rightarrow stack lacks steam supply and reaches steam starvation

EPFL Stack #1803: efficiency

EPFL Stack 1803 : coupling

Jan Van Herle

Hocheffiziente Power-to-X Technologie, 20. Juni 2023

21

Methanation @EPFL

EPFL Thermal coupling methanator => steam generation indirect indirect direct

EPFL EPFL methanator (10 kW) => direct steam prod.

EPFL Methanation results @ EPFL

- ✓ 98.5% H_2 -conversion achieved
- \checkmark both CO₂ and CO/CO₂-methanation successful (CO more exothermal)
- ✓ reactor cooled with pressurised water (15 bar, 200°C)
- ✓ heat exchange efficiency 80-91%
- ✓ methanation heat generates 87-113% of the steam required by the steam electrolyser

Jan Van herle EPFL-GEM

Publications

- P. Aubin, L. Wang, and J. Van herle, "Evaporating water-cooled methanation reactor for solid-oxide stack- based power-to-methane systems: design, experiment and modeling," *Chemical Engineering Journal*, **456**, 140256, 2023.
- P. Aubin, L. Wang, and J. Van herle, "SOE-methanation PtM system simulation: a case study with real reactor results," [submitted]
- P. Aubin, L. Wang, and J. Van herle, "SOE-methanation PtM system under steam and CO₂ co-electrolysis: reactor operation and system simulation," [prepared]
- P. Aubin, and J. Van herle, "Thermosyphon operation of the cooling system of a methanation reactor: an experimental assessment," [submitted]

Hocheffiziente Power-to-X Technologie, 20. Juni 2023

Perspectives

Steam + CO_2 co-electrolysis

under higher **pressure** (10 bar), lower temperature (600°C) => methane production in the stack => smaller methanator (10 bar)

coupled

27

Hocheffiziente Power-to-X Technologie, 20. Juni 2023

EPFL Co-electrolysis already validated 16'000h \checkmark

Short stack (6-cells); 65% steam, 25% CO₂, 10% H₂

Real-time optimisation (RTO) under **safety** constraints – experimentally proven on a commercial SOFC system

EPFL

RTO Control of a 1.5 kWe BlueGen mCHP 2. Stack current increased to follow power demand 28 70 5. Electrical efficiency is maximised 88888 65 24 [%] μ Ε 60 -20 55 50 16 2 2 6 1. Set-point = power demand: 2. Fuel flow adapted to increase efficiency 1600 4.5 [L.min⁻¹] $1 \text{ kWe} \rightarrow 1.25 \text{ kWe} \rightarrow 1.5 \text{ kWe}$ 1400 4 el [W] 200 3.5 0 q_{CH4} 1000 3 2.5 800 2 n 6 0 3. Air flow adapted to raise efficiency, without violating lower limit 4. Voltage limit (0.76V) not violated 160 q_{air} [L.min⁻¹] 0.85 ∑ 0.8 ○ 0.75 130 SolydEra => RTO on SOE ongoing 95 reac 0.7 60 6 0 2 0 6 Time [h] Time [h]

EPFL Seasonal gas storage (CH₄)

 $10 \text{ TWh} = 10 \text{ million } m^3 (100 \text{ bar}) = 1 \text{ km}^2 \text{ x} 10 \text{ m}$

Switzerland currently has no gas storage.

With 1 bio m³ NG storage (10 TWh), it could bridge its future winter electricity gap (a deficit of ~1 TWhe / month). 10 TWh of NG from P2G requires 15 TWhe of electricity, which could be covered from existing + future hydropower (>40 TWhe) and future PV (>30 TWhe).

Van herle / EPFL / GEM

EPFL Feasibility checks

- 10 TWh CH₄ : 1 km² x 10 m storage (0.01 km³)
- 30 TWhe solar PV : 150 km² panels (same amount as roof area)
- 110 km² or 4 km³ hydro-storage lakes for ~20 TWhe

1) 15 TWhe + 3 TWh heat => (90% el. eff., 1.4 V) 13.5 TWh H₂ (LHV) 2) 13.5 TWh H₂ + 2 Mt CO₂ => (75% meth. eff.) 10 TWh CH₄ + 3 TWh heat

- Swiss waste incineration : 4 Mt CO₂ and 8 TWh heat loss per year
- => (3000h/yr) 5 GWe electrolysers needed => (1 W/cm²) 0.5 km² membrane area => 5000 m² stack footprint (100 layers / stack) ≈2500 m³ ≈1500 m³ steel ≈12 kt steel (stack only)

EPFL

SOE integration opportunities

PtX relevant publications 2018-2019

- Techno-Economic Optimization of CO₂-to-Methanol with Solid-Oxide Electrolyzer , Hanfei Zhang, Ligang Wang, Jan Van herle, François Maréchal, Umberto Desideri, *Energies*, 12(19), 3742; https://doi.org/10.3390/en12193742 (2019)
- Balancing wind-power fluctuation via onsite storage under uncertainty: power-to-hydrogen-to-power versus lithium battery, Y Zhang, L Wang, N Wang, L Duan, Y Zong, S You, F Maréchal, J. Van herle, Y Yang, *Renewable and Sustainable Energy Reviews* 116, 109465 (2019)
- Fuel cell-battery hybrid systems for mobility and off-grid applications: A review, Shuai Ma, Mang Lin, Tzu-En Lin, Tian Lan, Xun Liao, F Marechal, J Van herle, Yongping Yang, Changqing Dong, Ligang Wang, *Renewable and Sustainable Energy Reviews* 135, Jan 2019, 1110119 (2019)
- Design of a Pilot SOFC System for the Combined Production of Hydrogen and Electricity under Refueling Station Requirements, M. Perez-Fortes, A. Mian, S. Santhanam, L. Wang, S. Diethelm, E. Varkaraki, I. Mirabelli, R. Makkus, R. Schoon, F. Marechal, J. Van herle, *Fuel Cells*, 19 (4), 389-407, DOI: 10.1002/fuce.201800200 (2019)
- Reversible solid oxide systems for energy and chemical applications–Review & perspectives, Venkataraman, Vikrant; Pérez-Fortes, Mar; Wang, Ligang; Hajimolana, Yashar S; Boigues-Muñoz, Carlos; Agostini, Alessandro; McPhail, Stephen J; Maréchal, François; Van Herle, Jan; Aravind, PV, *Journal of Energy Storage* 24, 100782 (2019)
- Power-to-methane via co-electrolysis of H₂O and CO₂: The effects of pressurized operation and internal methanation Wang, Ligang; Rao, Megha; Diethelm, Stefan; Lin, Tzu-En; Zhang, Hanfei; Hagen, Anke; Maréchal, François, *Applied Energy* 250, 1432-1445 (2019)
- Trade-off designs of power-to-methane systems via solid-oxide electrolyzer and the application to biogas upgrading, Jeanmonod, Guillaume; Wang, Ligang; Diethelm, Stefan; Maréchal, François; Van herle, Jan, Applied Energy 247, 572-581 (2019)
- **Power-to-fuels** via solid-oxide electrolyzer: Operating window and techno-economics, Wang, Ligang; Chen, Ming; Küngas, Rainer; Lin, Tzu-En; Diethelm, Stefan; Maréchal, François, *Renewable and Sustainable Energy Reviews* **110**, 174-187 (2019)
- Trade-off designs and comparative exergy evaluation of solid-oxide electrolyzer based power-to-methane plants, Wang, Ligang; Düll, Johannes; Van herle, Jan; Maréchal, François, International Journal of Hydrogen Energy 44, 19, 9529-9543 (2019)
- Optimal design of solid-oxide electrolyzer based **power-to-methane** systems: A comprehensive comparison between **steam electrolysis and co-electrolysis**, Wang, Ligang, Perez-Fortes, Mar, Madi, Hossein, Diethelm, Stefan, Van Herle, Jan, Marechal, Francois, *Applied Energy* **211**, 1060-1079 (2018)

33

EPEL

EPFL PtX relevant publications 2020-2021

- Triple-Mode Grid-Balancing Plants via Biomass Gasification and Reversible Solid-Oxide Cell Stack: Economic Feasibility Evaluation via Plant Capital-Cost Target Y Zhang, N Wang, C Li, M Pérez-Fortes, L Duan, J Van herle, F Maréchal, TE Lin, ... Frontiers in Energy Research 9, 121 (2021)
- Techno-economic comparison of 100% renewable urea production processes, H Zhang, L Wang, J Van herle, F Maréchal, U Desideri Applied Energy (2021), 284, 116401
- Reversible solid-oxide cell stack based power-to-x-to-power systems: economic potential evaluated via plant capital-cost target, Yumeng Zhang, Ningling Wang, Xiaofeng Tong, Liqiang Duan, Tzu-En Lin, François Maréchal, Jan Van herle, Ligang Wang, Yongping Yang, Applied Energy (2021), 290, 116700
- Techno-economic optimization of an integrated biomass waste gasifier solid oxide fuel cell plant, Mar Pérez-Fortes, Victoria Xu Hong He, Arata Nakajo, Jürg Alexander Schiffmann, Francois M. A. Maréchal, Jan Van herle, Frontiers in Energy Research 9, 247, section Process and Energy Systems Engineering
- Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer, Hanfei Zhang, Ligang Wang, Jan Van herle, François Maréchal, Umberto Desideri, Applied Energy 270, 115113 (2020)
- **Reversible** solid-oxide cell stack based **power-to-x-to-power** systems: Comparison of thermodynamic performance, Ligang Wang, Yumeng Zhang, Mar Pérez-Fortes, Philippe Aubin, Tzu-En Lin, Yongping Yang, François Maréchal, *Applied Energy* **275**, 115330
- Triple-mode grid-balancing plants based on biomass gasification and reversible solid-oxide cell stack: concept and performance, L Wang, Y. Zhang, C. Li, M Perez-Fortes, Tzu-En Lin, Y Yang, F Maréchal, J Van herle, *Applied Energy* 280, 115987 (2020)
- Enhancing the operational flexibility of thermal power plants by **coupling high-temperature power-to-gas** Y Sun, L Wang, C Xu, J. Van herle, F Maréchal, Y Yang, *Applied Energy* **263**, 114608 (2020)
- Green ammonia, H Zhang, L Wang, J Van herle, F Maréchal, U Desideri, Applied Energy 259, 114135 (2020)
- Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer
 H Zhang, L Wang, M Pérez-Fortes, J Van herle, F Maréchal, U Desideri, *Applied Energy* 258, 114071 (2020)

Hocheffiziente Power-to-X Technologie, 20. Juni 2023

EPFL Achievements

Jan Van Herle

- Two 5 kWe SOE stacks have been tested :
 - Stack 1801 in 2022 during 2 weeks
 - Stack 1803 in 2023 during 1 week
- Thermal balance is complex. Exothermal stack conditions (1.37 V) improve the thermal management for a limited penalty in electrical efficiency (86% LHV)
- Both stacks were succesfully coupled to a H₂ compressor and the OST methanator. Improvement of the coupling methodology could decrease the impact of the coupling on the stack.
- Electrical efficiency is significantly above the efficiency of a water electrolysis (PEM)methanator system.

EPFL Acknowledgments

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Energie BFE Office fédéral de l'énergie OFEN

ga na

Horizon 2020

European Union Funding

Hocheffiziente Power-to-X Technologie, 20. Juni 2023

EPFL

Thank you for your attention

SOE operating principle

