Die Zukunft der Hochtemperatur-Elektrolyse

Dr. Zacharie Wuillemin

Team Leader – Technology Development & Application Engineering SolydEra SA, Yverdon-les-Bains, Switzerland

We stack it.

SolydEra - More than 20 years of experience in SOC technology

SolydEra at a glance

Products

HEINSBERG

GERMANY

Assembling

ITALY

Stack Manufacturing,

Head Quarters

YVERDON

SWITZERLAND

R&D Center

MELBOURNE

AUSTRALIA

R&D Center

MEZZOLOMBARDO PERGINE VALSUGANA

ITALY

R&D, Pilot

Production

Partners & Affiliations

Facts & figures

Europe's largest industrial production plant for SOFC stacks

AUTOMATED STACK MANUFACTURING PLANT

SolydEra

One stack – multiple applications

GAS-TO-POWER

High efficiency Power and Heat production by using multiple fuels, including natural gas, H2 and H2/gas blends

POWER-TO-GAS

Conversion of steam into H2 by using electricity for hard-toabate industrial sectors and transportation

POWER-TO-POWER

Reversible SOFC systems integrated with H₂ storage in order to decouple electricity production and use

Applications

Industrial solutions

Integration of stacks for electrolysis and industrial sectors (*e.g.* green steel, synthetic fuel, marine sector, chemical industry)

Professional solutions

Integration of fuel cell modules into technical solutions of professional integrators (*e.g.* data centres)

Commercial solutions

Sales of power generators and cogenerators to commercial customers (residential, retail, hospitality, offices, transport)

A SOLID stack technology

Hydrogen is crucial to achieve decarbonization targets

Hydrogen role in energy transition

- H2 is complementary to batteries and the only solution to decarb hard-toabate industrial sectors and heavy-duty transportation
- Green H2 via electrolysis is one the most promising technology available
- **100+ GW** capacity announced by 2030
- More than 500 projects launched globally with 600+bn \$ investment
- SOE will offer minimum electricity consumptions (40 kWh/kg) and reduced sensitivity to electricity price
- Capability to operate in **reversible mode** is opening further niche opportunities

FUTURE SYSTEMS:

A QUANTUM STEP IN STACK AND MODULE SIZES

DEVELOPMENT AT SOLYDERA - DEMONSTRATION UNIT SIZES

System size evolution

- Exponential size evolution since 2010
- Residential CHP and industrial applications
- Largest stack platform for the market
- Current module sizes
 - Electrolysis 125kW
 - Reversible 40/125kW
- Starting 2023: Preparation of multi-MW installations

A quantum step: the G8X stack and Large Stack Module

SOFC – SOE Large Stack Module

- Based on the G8X stack
- 4 stacks tightly integrated in one single stackbox
- Common air and fuel supply
- One single interface to the system
- Fully instrumented

Main markets

- Power generation
- Cogeneration of power, heat and hydrogen (CH2P)
- Refueling stations
- Electrolysis, Power to X

Main specifications (Generation 2)

- Stack technology: G8
- 4 G8X stacks (8,3 kW nominal)
- Operation: SOFC and SOEC
 - SOFC: 32kW
 - SOEC: 65kg H2 / day
- Electrical power: 100kW .. +32kW
- Individual polarization control on 4 stacks
- Fuel and air supply:
 - Common for the 4 stacks
 - Fuel supply deviation < 1%
- Fuel: H2, Natural gas, syngas, steam, others
- Heat-up < 24h
- Nominal operating temperature 680-800°C
- Heat losses: 1.5-1.8kW (measured)
- Dimensions: 1.7 x 0.85 x 1.65 m

REVERSIBLE OR PURE ELECTROLYSIS ?

FUTURE SYSTEMS:

ECM – Electrolysis module

© SolydEra

rSOC - Reversible module

© SolydEra

MULTIPLE APPLICATIONS

HIGH TEMPERATURE ELECTROLYSIS:

The key advantage of high-temperature electrolysis

• Favorable thermodynamics

- Electrolysis of steam is more efficient than electrolysis of water
- Energy consumption 34.6kWh/kg at stack level (thermoneutral conditions)
- Valorization of synergies with the customer's plant
 - Waste heat: used for the preparation of steam
 - Waste offgas: used for heating or for reversible operation and standby
 - Local production and use of hydrogen
- Low energy consumption
 - Fully electric (incl steam): 48 kWh/kg
 - Using steam from plant:
 - Exploiting offgas:
 - Stack only (DC):

48 kWh/kg 40 kWh/kg 37kWh/kg 35kWh/kg

SolydEra

DECENTRALIZED, REVERSIBLE HYDROGEN (CO-)GENERATION

System design

- Main target: H2 refuelling stations
- Operation modes:
 - Hydrogen co-generation from NG/Biogas (CH2P)
 - Steam Electrolysis

- (SWITCH)
- Technology: coupling of a (reversible) SOFC system with a PSA unit for gas cleaning
- Module specifications
 - One single module for 2 operation modes
 - Hydrogen co-generation mode (CH2P): production of 20kg H2/day + 25kWel
 - SOE mode (SWITCH project): min 50kg H2/day

DECENTRALIZED, REVERSIBLE HYDROGEN (CO-)GENERATION

Schap I SMITCH

- Module specifications
 - One single module for 2 operation modes
 - CH2P mode: production of 20kh H2/day + 25kWel
 - SOE mode (SWITCH project): min 50kg H2/day

ELECTROLYSIS FOR GREEN STEEL AND METALLURGY

Overview

- Hydrogen for metal reduction or protective atmosphere (Heat treatment furnaces, welding, etc.)
- Opportunities for SOE
 - Heat recovery (free steam)
 - Process offgas
 - Renewable electricity / plant generators
- Current project in elaboration
 - Customer: Swiss Utility
 - End-user: Swiss steel manufacturer
 - In-field testing of the ECM100 / ECM125
 - Full-integration test with H2 purification
 - Plant integration
 - Coupling with solar field & battery storage

ELECTROLYSIS FOR GREEN AMMONIA

Overview

- Hydrogen for green ammonia production
- Opportunities for SOE
 - Heat recovery (free steam)
 - Process offgas
 - Large solar & renewable fields / onsite power generation
- Current project in elaboration
 - Customer: confidential
 - End-user: confidential
 - Multi-MW projects

ELECTROLYSIS FOR SYNTHETIC FUELS

Demonstrationsanlage HEPP High Efficiency Power-to-Methane Pilot

Overview

- Hydrogen for synthetic fuel production
- Opportunities for SOE
 - Heat recovery e.g from methanation process
 - Process offgas (e.g. cleaning offgas)
 - Renewable electricity
- Current projects
 - OST demonstration unit
 - Others (various sizes):
 - Biomass treatment plant

SolydEra

- Methanation
- Methanolization

OTHER APPLICATIONS OF THE SOLID OXIDE TECHNOLOGY

Overview

- Naval industry
 - Hotel power generation
 - Propulsion
 - UPS
- Datacenter
 - High-availability power generators
- Grid services (reversible systems)
 - Power-to-Gas
 - Gas-to-Power (different sources)
- Etc.

HIGH TEMPERATURE ELECTROLYSIS:

PROJECTS WORLDWIDE

THE KEY PLAYERS

- Bloom Energy (US):
 - Energy servers & Electrolysers
- Sunfire (D)
 - Multi-MW demo sites in SOE
 - Alkaline IHT Technology (CH)
- SolydEra (I,CH,D,AUS)
 - Proprietary stack and system technology
 - Reversible and pure SOE systems
 - Micro-COGEN units
- Ceres / Shell Bosch / Linde (D/UK)
 - Ceres: SOE stack technology licenser
 - Demo projects 1MW -> Power-to-X
- Halldor Topsoe (DK)
 - Proprietary SOE technology e.g. for ammonia and syngas (proprietary)
- Convion (FI)
 - Integrator of Different stack technologies (Elcogen, IKTS, ...)
 - SOE and SOFC demonstrator
- Genvia (F)
 - Targeting Pink Hydrogen (Nuclear)?
- Other stack manufacturers: Elcogen, IKTS, etc

PROJECTS FOR THE NEXT YEARS & DECADES

- Decentralized Green Hydrogen
 - Typical size < 100MW
 - Blending in Natural Gas network
 - Integration in Biogas/Biomass/Waste treatment
 - Reversible systems
 - Steel manufacturing, etc

- Large Green-Hydrogen Plants
 - Typically > 500MW 2GW
 - Solar and/or wind power on site
 - Multi-technologie Alkaline + PEM + SOE
 - Main sites:
 - Middle East: > 100GW solar fields
 - Technology:
 - Industry integration: e-NG, green ammonia
 - South US
 - South Europe (Portugal, Greece)
 - E.g. White Dragon: 250.000 T/y H2
 - North Europe: e.g. Liquid Wind (wind to methanol)
 - Industry: e-fuels, paper industry
 - Asia (Japan, South Korea, China,..)
 - South America (Chile, etc.)
 - Main challenges
 - Manufacturing and financial capacity of suppliers
 - Materials (e.g. Iridium for PEM)
 - Power electronics
 - Intermittent renewable energy
 - On-site storage

European H2 network

Conclusion

SolydEra

- High temperature electrolysis has an important role to play in the future of decarbonization
- The technology maximizes the synergies with the customer's process
- SolydEra acts as a core technology provider, offering stacks and electrolyzer modules to system integrators and EPC partners
- H2 production by electrolysis with < 40 kWh/kg and potential H2 cost < 1.5 \$/kg</p>
- Fully reversible technology: the same asset can generate electricity from H2 when needed, enabling coupling with solar and wind green energy sources
- CO₂/steam co-electrolysis possible to produce syngas, the base for e-fuel production

THE FUTURE IS NOW

