
Students

Gino Cardillo

Pascal Schürmann

Alexandre Ichiro
Lagadec

Visual OO-Debugger

A VS Code extension for visualizing debugger information
at runtime

Own presentment
Different types of nodes

Own presentment
Implemented commands for the extension

Own presentment
Example graph with code

Eastern Switzerland University of Applied Sciences | Student Research Projects 2022 | Informatik

Software, Software
Engineering - Core
Systems

Subject Area

Prof. Mirko Stocker
Examiner

Introduction: Object-oriented programming can be a
challenge for unexperienced or new developers. The
relations between objects, variables, and the concept
of call-by-reference in methods is difficult to
comprehend for a lot of people, sometimes even for
more experienced developers. Teaching object-
oriented programming can be just as challenging as
learning it. One of the best ways to teach this topic, is
to visualize the relations between objects and
variables. Creating such visualizations is time
consuming.

Objective: The goal of this project is to create a tool
for developers, with any level of experience, as well
as teachers, to ease the process of learning and
teaching the concepts of object-oriented
programming. This tool uses debugger information at
runtime to visualize objects and variables in a graph.
The nodes of the graph represent variables and
objects while the edges represent references
between variables and objects, as well as references
between two objects.

Result: The result was an extension for the widely
used and free IDE Visual Studio Code. For the
visualization of the graph, we used the open-source
visualization library vis.js. In case of an object, a node
consists of the name of the class in parentheses and,
if present, every instance field with a primitive data
type including its value. References to other objects
are displayed with edges/arrows to other nodes. In
case of a variable referencing an object or null, a
node simply contains the name of the variable. A
variable with a primitive data type contains the type,
name of the variable and the value. Newly added
nodes and edges are colored in yellow. Multiple
options to export the visualization were implemented,

as a PNG, PlantUML or GraphViz of the current state
or as a GIF of multiple steps. Using the two buttons in
the upper left-hand corner of the debugger view, it is
possible to load the previous/next state of the
visualization, all the way back to the first visualization.

