
Graduate

Fabian Thurnheer

Marco Gartmann

C++ Style Checker for Visual Studio Code

Proof-of-Concept Implementation of Cevelop's C++ Style
Checks in an LSP Language Server

Own presentment
Without LSP: Each IDE Needs its Own Style Checker Plugin

Own presentment
Using one Language Server with LSP to Support Multiple IDEs

Own presentment

Example of an Implemented Style Check and Corresponding
Quick Fixes

Eastern Switzerland University of Applied Sciences | Bachelor Theses 2021 | Bachelor of Science FHO in Informatik

Software Engineering -
Core Systems

Subject Area

Guido Zgraggen,
Google Switzerland,
Zürich, ZH

Co-Advisor

Thomas Corbat
Examiner

Introduction: Programming in C++ usually relies on
extensive toolchains for building, testing, and
deploying applications. The fact that a given C++
source file successfully compiles does not imply that
its code is of good quality and style. Moreover, it is
not assured that agreed coding guidelines, which can
be self-defined or well renowned, are met. Ensuring
this by manual code reviews after the code passed
through compilation and testing, results in a long
feedback loop and negatively affects efficiency. To
counteract this problem, Cevelop, a C++ IDE built by
OST's Institute for Software (IFS), offers style checks
that give programmers instant feedback on the code
as they type. While some of these checks are
implemented in other IDEs and plugins as well, many
of them are exclusive to Cevelop and are not
available in other IDEs like Microsoft's Visual Studio
Code. However, this would be desirable in the future
so that students using other IDEs than Cevelop can
profit from these style checks as well.

Approach: In this thesis, with the LLVM compiler
project and its clang-tidy code analysis component, a
feasible infrastructure was elaborated. Using this
infrastructure, Cevelop's style checks and new ones
can be implemented in the future to make them
available in Visual Studio Code. Furthermore, after an
analysis of offered style checks in Cevelop, selected
checks were implemented as a proof-of-concept for
LLVM's clang-tidy component using the C++
programming language. In the chosen approach, all
the code analysis intelligence is encapsulated in an
IDE-independent language server (LLVM clangd,
which includes clang-tidy). To use the implemented
style checks in an other IDE than Visual Studio Code,
only a small plugin is needed to communicate with the
language server through the Language Server
Protocol (LSP). Therefore, they can also be offered in
other IDEs with minimal additional effort.

Result: This thesis laid the foundation for offering
Cevelop's style checking intelligence in IDEs
independent of Cevelop. Thus, users of other IDEs
can be reached, and more developers can be helped
to write clean C++ code. The created checks were
presented to the LLVM community to be integrated
into the project's code base and to make them public.
Until the created style checks are integrated, a self-
built executable of LLVM's clangd language server,
which includes clang-tidy and the created style
checks, can be used with clangd's VS Code plugin.
This way, the created checks could help OST
students enlisted in a C++ course to write clean C++
code and to comply with taught best practices,
without being bound to Cevelop. A created
developer's guide assists programmers (e.g., IFS
employees) to further extend clang-tidy with style
checks that would be beneficial for them or for
students.

