
Student

Jan Huber

Haskell Substitution Stepper

An equational reasoning assistant for teaching and
debugging

Own presentment
Architecture of the application

Glasgow Haskell Compiler
Haskell Core Intermediate Language Representation

Own presentment
Example Substitutions

Eastern Switzerland University of Applied Sciences | Student Research Projects 2022 | Informatik

Software Engineering -
Core Systems

Subject Area

Jasper Van der Jeugt,
Jasper Van der Jeugt,
Zürich, ZH

Co-Advisor

Prof. Dr. Farhad D.
Mehta

Examiner

Definition of Task: In the imperative programming
paradigm, a debugging tool with an appropriate
visualization of the program counter and internal state
is often used to learn about the program execution.
However, functional programming languages like
Haskell do not have the concept of a program counter
or internal state. Executing a program in Haskell is
typically viewed as an evaluation of an expression
using repeated substitution.

Although lists of substitutions are often used in
textbooks, there is no tool to automatically generate
such substitutions for the full Haskell language.
Having a tool to generate such substitutions can help
to learn programming and help to debug programs
written in the functional style.

Hence, the main aim of this project is to implement a
substitution stepper for Haskell that visualizes the
execution of a program.

Approach: The first proof of concept was built upon a
simplified subset of the Haskell abstract syntax tree.
Further research about the Glasgow Haskell Compiler
(GHC) and discussions with Haskell experts showed
that it is more feasible to work with GHCs
intermediate language „Core“ than with Haskell itself.
This change has made it possible to support a larger
part of the language.

Result: The result of this project is a command line
tool which can step through most Haskell programs
and produces outputs that closely look like examples
given in textbooks. In comparison to similar existing
tools, the Haskell Substitution Stepper supports a
larger part of Haskell and is more closely coupled with
the Glasgow Haskell Compiler. The output can be

pretty-printed in the "original Haskell" syntax or in a
"Core" syntax.

