
Linus
Basig

Fabrizio
Lazzaretti

Reliable Messaging Using the CloudEvents Router

The CARU Device placed in the home of a senior citizen
CARU AG

CARU's envisioned system context
Own presentment

Stateless routing with the "At Least Once" delivery guarantee
Own presentment

Bachelor Theses 2021 ■ Bachelor of Science FHO in Informatik

CARU AG, Zürich, ZHProject Partner
Internet Technologies and ApplicationsSubject Area
Dr. Gerald Reif, Innovation Process Technology, Zug, ZGCo-Advisor
Prof. Dr. Olaf ZimmermannExaminer

Linus Basig, Fabrizio LazzarettiGraduate
Candidates

Problem: CARU is an AgeTech startup offering a voice-controlled emergency-call
device designed to help the elderly live an independent life for longer. The device will
react to a cry for help and automatically activate an emergency call to up to 5 family
members. CARU's software architecture is heavily event-driven, envisioning a unified
event plane letting events flow between all connected systems. To support this
vision, CARU's events are structured according to the CloudEvents specification of
the Cloud Native Computing Foundation (CNCF). In our previous student research
project, we designed, implemented, and open-sourced the CloudEvents Router
(github.com/ce-rust/cerk) – a first step towards this vision.
To entrust mission-critical events to the CloudEvents Router, it has to guarantee that
these messages arrive. The goal of this bachelor thesis is to extend the router to
provide such a delivery guarantee. This guarantee should also apply when an event
is routed across different protocols. We focused on the protocols that the
CloudEvents specification defines a protocol binding for: AMQP, Kafka, MQTT,
NATS, and WebHooks.

Approach: As a starting point, we conducted extensive literature research to identify
and compare existing reliable messaging definitions and patterns.
Our research showed that the most feasible approach to provide reliable routing is to
implement an end-to-end delivery guarantee of "At Least Once". This guarantee
applies from the event source, via the router, to the event destination. We then
analyzed which delivery guarantees are provided by the mentioned messaging
protocols and how interoperable the supporting concepts are. Having adapted the
architecture design of the existing CloudEvents Router to fulfill the new requirements,
we implemented a proof-of-concept that routes messages between AMQP and
MQTT with an "At Least Once" delivery guarantee.
We validated the correctness of our implementation in two end-to-end test-scenarios.
Both test cases demonstrated that the shortcomings of the previous implementation
could be overcome.

Result: We released our enhanced open-source CloudEvents Router implementation,
now supporting the desired "At Least Once" delivery guarantee in addition to the
already existing "Best Effort" policy. The new version also supports the AMQP
protocol complementing the already existing support for MQTT.
One challenge was that the MQTT specification does not require the implementation
to include the message processing in the application in its "At Least Once" delivery
guarantee. This behavior can lead to message loss during the routing process. This
imprecision in the specification materialized in the consequence that none of the
eligible libraries allows extending the delivery guarantee to the message processing.
To solve this issue, we proposed a change to optionally include the message's
processing in the "At Least Once" delivery guarantee for the Mosquitto MQTT library.
With this new guarantee, CARU has started evaluating the CloudEvents Router for
productive use on their device.


