Graduate Candidate Christoph Josef Amrein

Examiner Prof. Dr. Luc Blaser
Christoph JosefCo-Examiner ==
Amrein Subject Area Software and Systems

Detection of Concurrency Bug Patterns

Roslyn-Based Static Code Analysis for C#

public void Add(int amount) {

lockObject.EnterWriteLock();

stock += &
lockObject
}

@, (field) ReaderWriterLockSlim Warehouse.lockObject

‘lockObject.EnterWriteLock' is nested within a read lock.

public bool TryAdd(int amount) {
lockObject.EnterReadLock();
try {
if (stock + amount > capacity) {
return false;

This work presents a static checker for the detection of common concurrent
bug patterns in C#. A collection of bug patterns has been collected, describing
specific code constellations that can lead to different concurrency-related bugs.
The checker and the catalog motivate the use of numerous design principles
that can help reducing the risk of concurrency bugs.

The checker uses Roslyn to perform its code analysis and consists of three
components. (1) A command line interface for quick and installation-free scans

ii ’ of solutions. (2) A NuGet package enabling straightforward integration into

jz ﬁggsi:":xi continuous integration systems. (3) A Visual Studio plugin for just-in-time code
37 } finally { analysis that provides immediate feedback to the developer.

38 lockObject.ExitReadlLock();

jg } } During the experimental evaluation, the checker has been used to analyze the

source code of various open source projects. The results have been manually
reviewed to verify the overall quality of the analysis. This has shown that
projects of different scales and maturity suffer from concurrency bugs. In other
words, the evaluation confirms that the checker can be a valuable utility to
reduce the chance of bugs when developing concurrent code.

Just-In-Time Code Analysis in Visual Studio

Build Succeeded

|““I| Build 20160520.13

Ran for 40 seconds (Hosted), completed 7 da
Summary

Timeline Tests

samples.cli\LowLevel.cs (16, 14)
A memory barrier could be necessary between the writing
to 'samples.cli.LowLevel.a' and reading at 'lb'.

samples.cli\Monitors\AbortManualMonitor.cs (21, 13)
Consider using lock(...) instead of
‘System.Threading.Monitor.Enter()".

samples.cli\Monitors\AbortManualMonitor.cs (25, 15)
Consider using lock(...) instead of

Integration of the Analysis into TFS Online

