
Student

Eliane Irène Schmidli

Using FRP in Yampa to Redesign the Control Software
for the Robotic Artwork “Pygmies”

Own presentment

Figure 1: Old implementation of the behavior of the Pygmy
using imperative style (simplified)

Own presentment

Figure 2: New implementation of the behavior of the Pygmy
using FRP (simplified)

Source: http://www.porsandrao.com/work/?workid=21
Figure 3: Pygmies artwork by Pors & Rao

Eastern Switzerland University of Applied Sciences | Project Theses 2023 | Master of Science in Engineering | Technik und IT

Pors & Rao, Bangalore,
India

Project Partner

Computer Science
Subject Area

Prof. Dr. Farhad D.
Mehta

Advisor

Definition of Task: The Pygmies artwork by Pors &
Rao (see Figure 3) is a robot application reacting to
the sounds in the room and controlling actuators. The
control software is written in a low-level imperative
style. As a result, the program sequence and the
commands to the actuators are intertwined which
makes the code difficult to understand. Furthermore,
the program code describes the behavior of the
program in certain states, but it is difficult to
comprehend where the state transitions are initiated.
This makes changes in the program sequence
difficult.

Functional Reactive Programming (FRP) is a
composable, modular way to program reactive
applications. With FRP, the control software has been
redesigned, making it more customizable, especially
for people with little programming experience. To see
with little effort what such a new design would look
like, a graphical user interface (GUI) application was
developed that simulates the artwork. The redesign
uses Yampa, an FRP implementation in Haskell.

Approach: In FRP, it is possible to separate the
behavior of the program and the control of the
sensors and actuators. The behavior is implemented
in a function 'pygmy' consuming a signal indicating
the current sound level and producing a signal
indicating the current position of a figure. The GUI
can use the resulting signal to draw a figure at the
corresponding position.

A program in an imperative style describes what
should happen in a certain state (see Figure 1). But, it
is unclear when the Pygmy instance is set to the
corresponding state. In FRP, the reaction to events is
described (see Figure 2). For example, in the code
from lines 9 to 10, the 'safeBehavior' is executed until
an event called 'danger' occurs, after which the
Pygmy will hide. Or from lines 14 to 15, the Pygmy
will wait until the time is up and then move until it
arrives at a certain position.

Conclusion: The implementation of the control
software of the Pygmies artwork with FRP is very
promising. Due to the modularization and the more
visible state transitions, the code is better
understandable, and thus it is easier to make
changes in the code.

The implementation in FRP comes close to the
original implementation. Due to the many advantages
that the new design in FRP brings, it is worth
replacing the control software of the artwork. Thanks
to the separation of the GUI component, it should be
possible to replace the GUI with the control of the
actuators without adapting the behavior of the
Pygmies much.


