
André
Gasser

Students André Gasser
Lecturers Prof. Dr. Luc Bläser
Advisors Dr. Felix Friedrich , ETH , Zürich , ZH
Topic Software and Systems

GPU Parallelization as a Service
Building a system which allows execution of C# code on a remote GPU

System Overview

Code Transformation and Execution Overview

Kernel Performance Overview

General purpose GPU (GPGPU) computing gains momentum these days.
However, many issues remain unsolved. During this master thesis, two major
issues software engineers have to cope with have been addressed. First,
development machines do often not possess enough GPU cores to handle large
computational workloads. Operating a fully-equipped GPU computing cluster is
often not a realistic scenario, as it means investing a lot of money in hardware.
Likewise, the recurring costs must not be forgotten, such as operating
personnel and expenses generated by power consumption of GPU clusters.
Second, general purpose GPU computing is still a very low-level, hardware-
oriented task. It requires specific knowledge within the field. This can be
counter-productive, especially in today's software engineering world, in which
projects are subject to demanding release schedules. Modern managed
development environments, like .NET, do not provide built-in support for cross-
compiling their code into code targeting the GPU platform. Although specific
third-party libraries, such as CUDAfy.NET, exist, they often operate on a low
abstraction level and require specific knowledge about how GPUs function
internally.

It becomes clear that the issues mentioned above lead to an increase in
software development expenses and effort. To address them, two prototypes, a
compiler and a cloud web service, have been developed. The compiler
translates CIL code into PTX assembly during runtime. An important design
goal was to create a lightweight runtime system which can handle the required
compilation tasks without requiring excessive libraries such as LLVM.
Everything was constructed using pure CUDA technology from NVIDIA
Corporation. The cloud web service acts as a GPU as a Service component. It
hosts at least one GPU and executes PTX assembly code sent to it. This way,
computational workloads can be offloaded to a remote system, which is
equipped with proper GPU hardware. Both components together, the compiler
and the cloud web service, provide a seamless development experience for the
software engineer. They allow a software engineer to write program code in his
favorite .NET programming language. This approach does not require the
software engineer to possess any knowledge about the inner workings of GPUs.
From a project manager's point of view, significant savings in time and money
can be achieved.

This thesis has shown that offloading GPU workloads to remote systems is a
feasible task. End users and service providers are decoupled by a well-defined
service interface, which allows both of them to change or scale without
affecting the opposite party. Also, a working compiler was built, which is able to
translate a minimal subset of the CIL instruction set into PTX assembly. This is
a key element in building a seamless user experience for the .NET software
engineer. Regarding the future, the GPU as a Service concept could soon
become a major business use case, in which developers, hardware
manufactures and companies building development tools have an equally high
stake.

