
Reto
Guadagnini

Reto Guadagnini
Prof. Dr. Andreas Steffen
Dr. Edgar Lederer, FHNW
Software and Systems

Towards a Formally Verified Implementation of SHA-3 in SPARK
A Practical Application of Formal Methods for Program Verification

The sponge construction of the SHA-3 hash algorithm 
(Source: http://keccak.noekeon.org/)

Proof of a Verification Condition with the Isabelle proof 
assistant performed to verify a part of our SHA-3 
implementation

Introduction: In autumn 2012 the National Institute of Standards and 
Technology (NIST) selected the KECCAK algorithm to become the new 
standard hash algorithm called SHA-3. When implementing a hash algorithm 
like SHA-3 it is critical for the security that the resulting implementation strictly 
follows the specification of the algorithm since otherwise security flaws could 
be introduced. Program verification by "formal methods” allow one to proof, 
that the implementation of a program really meets its specification in contrast 
to the today commonly used tests which are only able to show that the 
implementation of a program fulfills its specification in the test cases. There 
are programming languages like SPARK that were explicitly designed to 
support formal program verification. The main goal of this thesis was to create 
an implementation of the SHA-3 hash algorithm in the SPARK programming 
language, to formally verify this implementation regarding its specification as 
far as possible with the help of the SPARK tools and to use classical tests to 
verify the parts of this implementation for which the SPARK tools were not 
powerful enough to formally verify them.

Proceeding: In order to achieve this goal, first the basics of the formal method 
behind SPARK, which is called Hoare Logic and their application in the 
SPARK programming language were investigated. Then the KECCAK 
algorithm, which was elected to become the SHA-3 hash algorithm, was 
examined. Finally, since at the time of writing the standardization of the SHA-3 
hash algorithm was not yet completed, the KECCAK algorithm with default 
parameters was implemented as part of the libSPARKCRYPTO (a library of 
cryptographic algorithms which are written in SPARK) in SPARK and was 
verified with the help of the SPARK tools.

Result: For the resulting implementation of KECCAK (SHA-3) in SPARK the 
absence of runtime errors was proved with the help of the SPARK tools. It 
appeared that for the formal verification of this implementation of KECCAK 
regarding its specification the SPARK tools alone were not sufficient and one 
had to use a proof assistant like Isabelle in addition. With the help of Isabelle, 
a small part of the resulting implementation of KECCAK could be formally 
verified regarding its specification, thus partial correctness was shown for this 
part. The rest of the implementation was verified regarding its specification by 
implementing and performing classical tests based on the test vectors 
provided for KECCAK. With the current version of SPARK and its tools it 
should be possible for an engineer with basic training in formal methods 
(especially Hoare Logic) to implement a cryptographic algorithm in SPARK and 
to prove the absence of runtime errors for this implementation with the help of 
the SPARK tools. For the formal verification of such an implementation 
regarding its specification, a strong background in mathematical logic, formal 
methods and extensive knowledge of a proof assistant like Isabelle is 
necessary and thus an expert in this field is required to perform formal 
verification.

Graduate Candidate
Examiner
Co-Examiner
Subject Area


