
40 HSR Hochschule für Technik Rapperswil Bachelorarbeiten 2016 Bachelor of Science FHO in Informatik

Introduction: Classical multithreaded programming requires explicit synchronization of

shared resources, being a highly challenging task for many software developers: On the

one hand, identifying shared resources is nontrivial, easily leading to race conditions in

case of undersynchronization. On the other hand, synchronization naturally bears the

risk of deadlocks and starvation.

Approach / Technologies: Transactional memory is an alternative concept, significantly

simplifying concurrent programming. It employs a descriptive programming model using

the notion of transactions, inspired by database systems. A transaction constitutes an

atomic sequential execution that is automatically isolated to other concurrent transac

tions. The runtime system guarantees the correct transactional execution, typically by

using an optimistic concurrency control scheme.

Result: We have developed a practical transactional memory programming model and

runtime system for the .NET framework. Our experimental evaluation shows that the

solution is superior to existing .NET transaction frameworks in terms of performance,

correctness, and ease of use. Moreover, it employs Intel TSX hardware transactional

memory to increase performance. Last but not least, a refactoring tool for Visual Studio

C# assists programmers on migrating existing code to the transactional model.

Transaction block in C#.

Refactoring assistance in Visual Studio.

Execution time of 100 million transactions, with and without Intel TSX
hardware support.

Graduate Candidates Christoph Amrein, Timothy Markiewicz

Examiner Prof. Dr. Luc Bläser

CoExaminer Dr. Felix Friedrich, ETH Zürich, Zürich, ZH

Subject Area Software

Software Transactional Memory for .NET
A runtime system for simple and efficient transactionbased concurrent programming in .NET

Christoph
Amrein

Timothy
Markiewicz

