
22

Introduction: Fuzzing is a technique for detecting software flaws by intentionally sending 

invalid input to a target of evaluation, generally involving a high degree of automation. 

For software engineers it is crucial to identify and eliminate such flaws since they might 

be exploitable by a remote attacker. As a consequence an attacker could compromise the 

application as well as the operating system the software is running on, gain unauthor-

ized access and steal or modify confidential data. While the basic idea behind fuzzing 

is simple, creating thorough, precise and effective fuzzers is a real challenge. With time 

and computing power being limiting factors, the success of fuzzing depends on the level 

of detail when modelling the protocol as well as the effectiveness of the data mutations 

performed. The goal of our thesis is to present methods to effectively fuzz a network (i.e. 

server) application using an example protocol and a custom fuzzer.

Approach / Technologies: By choosing the standards-based Extensible Messaging and Pres-

ence Protocol (XMPP), we selected a contemporary protocol that is gaining popularity in 

real-time communication applications and that also incorporates many advanced con-

cepts found in other common networking protocols. The scope of the XMPP protocol 

including all its extensions is vast and therefore presents a major obstacle in terms of pro-

tocol modelling and target coverage. As our tool of choice, we selected the Peach Fuzz-

ing Platform for fuzzer modelling. Peach is a free, powerful framework including many 

automation features. Partly due to the documentation, which in some areas is very scarce, 

Peach has quite a steep learning curve. By documenting our experience, successes and 

mistakes, we aim to reduce the initial effort required to become acquainted with Peach 

and its varied features. Using an arsenal of custom fuzzers and two different XMPP serv-

ers, we evaluated how to fuzz most effectively.

Result: In addition to general considerations such as the circumstances under which fuzz-

ing makes sense and the limitations of fuzzing, we also present methods to tackle ex-

tensive XML-based protocols, and tuning Peach to achieve higher performance. We also 

point out strategies to achieve a high level of coverage and precision. In order to manage 

the protocol‘s complexity, we wrote scripts to facilitate fuzzer creation, allowing us to rip 

and process XML content from extension RFCs. Since Peach does not natively support 

XML-based protocols, we added custom components.

Our test set-up including the Peach Framework components Fuzzer and 
Agent (with its diagnostic and logging features) and the target server

The challenge of breaking down a protocol which spans hundreds of 
pages of documentation

Success-determining factors: Modelling details and mutation accuracy

Graduate Candidates Michael Fisler, Kevin Lynn

Examiner Prof. Dr. Andreas Steffen

Co-Examiner Dr. Ralf Hauser, PrivaSphere AG, Zurich

Subject Area Sicherheit

Project Partner Compass Security AG, Jona SG

IT Security: Fuzzing Windows Applications and Network Protocols
Evaluating fuzzing by means of an example protocol and a custom fuzzer

Michael
Fisler

Kevin
Lynn

Sicherheit


