Graduate Candidate Micha Reiser
Examiner Prof. Dr. Luc Blaser
Co-Examiner --

Subject Area Software and Systems

Type Inference and Type Checking for JavaScript Strict Mode

Using Hindley Milner Algorithm W Combined with Abstract Interpretation

'use strict";
const logger =
messa es:
log: unction (m) {
this.messages.push(m);

1"
2
8
5

a) g}
g &l 1

cons og = er.lo

0logger. lgg(Va?gd)i &
11log{"Runtime error)

this-binding.js

his, messages push(m);

TypeError: Cannot read property 'messages’ of undefined
at logger.log (this-binding.js:
at Obaect .<anonymous> (this-! 1nd1n§ js:11:1)
le (module.j
e. extensions

gs (module.js:550:10)

at tryModuleLoa (module.js:)

at Function.Module. load ?modu1e 35:409:3)
at Functxon Module.FunMain (module]S 575:10)
at rtup {node. 35:160:18

at node is:

a) Sample Listing b) Executing the Sample Listing Causes
a Runtime Error

Initial memory usage 40.06640625
./this-bindin
Tyge inference’

messages:

alled for node

4 log: unction (m) {
> 5 this,messages.push(m);
6
{2
Error: Type inference failure: Potential null pointer

when” accessing prop ert{ messages on null or not
initialized object of type undefined.

Output of Static Analyzing the Sample Listing with the
Developed Checker

In recent years, the popularity of JavaScript drastically increased and became
a general-purpose language. However, the tool support for program verification
is scarce due to the dynamic nature of JavaScript that is hard to be covered
using static analysis. Existing verification tools are either limited to simple bug
patterns, are based on a super or subset of JavaScript, or only support
outdated JavaScript versions.

This work introduces an algorithm for type inference and type checking of
JavaScript code written in strict mode. This algorithm combines the Hindley-
Milner Algorithm W with abstract interpretation. The type system used is
unsound, as the precision of type inference diminishes for reflection-like code
that is mainly found in frameworks or libraries.

The defined algorithm has been implemented and is compared to competing
type checkers. The evaluation results show that the presented type inference
algorithm is precise for a majority of programs. It provides a valuable feedback
to programmers if combined with type checking.

