
Graduate

Roman Bögli

Assessing RISC Zero using ZKit: An Extensible Test &
Benchmarking Suite for ZKP Frameworks

Own presentment
ZKit Component Diagram

Own presentment
Screenshot of the ZKit CLI

Own presentment
Comparative Duration of Batched IPs Relative to Single IP

Eastern Switzerland University of Applied Sciences | Master Theses 2024 | Master of Science in Engineering | Technik und IT

IBM Research,
Rüschlikon, Zürich

Project Partner

Computer Science,
Data Science, Software
and Systems

Subject Area

Dr. Thorsten Kramp
Co-Examiner

Dr. Alexandru Caracas
Advisor

Introduction: In the realm of digital money, a common
use case involves proving the membership of a coin
or token within a publicly accessible set of valid coins.
The authority responsible for issuing or minting these
valid coins establishes this set, for example, using a
Merkle tree data structure. To demonstrate the
inclusion of a specific coin in this set, a prover P
provides an authentication path or Inclusion Proof
(IP), which is a list of hash values or digests from the
tree’s leaf to its root. The verification process involves
verifier V hashing the leaf data, appending the next
digest to the result, and repeating this step until
processing all elements in the authentication path. V
is convinced of the coin’s inclusion in the set when
the final digest matches the publicly known root hash
of the Merkle tree. While the above described method
is considered an easy-to-implement and efficient way
to demonstrate an item’s inclusion in a set, it
necessitates revealing the particular item in question.
In the context of digital money, however, this
contradicts with upholding user privacy. In other
words, P should be able to convince V that a given
coin belongs to a set of valid coins without disclosing
the specific coin’s identity. The emerging field of Zero-
Knowledge Proof (ZKP) protocols serves as a
solution to this problem. RISC Zero or risc0 enables
verifiable general-purpose computations in zero-
knowledge through its Virtual Machine (VM), which
emulates a reduced Instruction Set Architecture (ISA).
This so-called Reduced Instruction Set Computer
(RISC) inspired the framework’s naming. The reason
for focusing on risc0 in this thesis is twofold. First, it
allows to specify circuits or proof logic natively using
Rust, which leverages the ease to develop custom
ZKPs. Second, it implements the Scalable
Transparent Argument of Knowledge (STARK)
protocol which, in contrast to Succinct Non-Interactive
Argument of Knowledge (SNARK) systems, does not
require a trusted setup and is post-quantum secure.

Approach / Technology: This thesis summarizes the
most important properties of ZKPs and highlights the
key differences between two famous implementation
families, namely SNARK and STARK systems. Also,
we provide a summary of promising software libraries
or frameworks that help to create and verify ZKPs.
Next, we analyze risc0 in detail using the above-
addressed use case of an IP, i.e., proving a the
inclusion of leaf in a Merkle tree data structure.
Therefore, we propose the concept of ZKit, an
extensible toolkit for testing and benchmarking
various ZKP frameworks. Besides a Command Line
Interface (CLI) to execute parameterized benchmarks
or generate Merkle tree test data, it also contains
functionality to define and exchange IPs in a unified
way. Furthermore, ZKit exemplifies how ZKP circuits
written in Rust can be ported to the Go ecosystem
through a wrapper library. This portability facilitates
the integration of ZKPs in existing Go projects such
as for example the Fabric Token-SDK (FTS). Last but

not least, we share our risc0 benchmark results on
IPs in two different settings. In the first setting, we
measured the performance and allocated resources
to create one proof for a single IP. In the second
setting, we aggregate or batch multiple IPs in a single
proof. We compare and interpret the results of these
two settings at the end and state our
recommendations that we drew from it.


