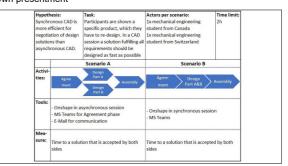
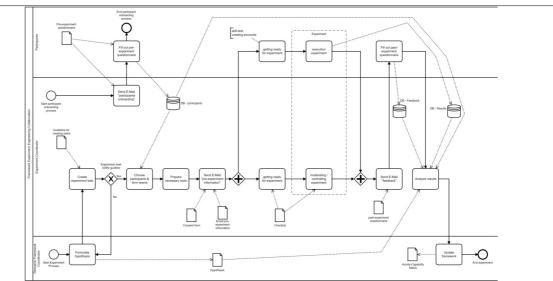
Engineering Collaboration Basecamp

Methods and tools for globally distributed cross-disciplinary collaboration in Engineering

Student


Raphael Andreas Meyer


Problem: Global engineering collaboration poses significant challenges, including trust-building, stakeholder integration, intercultural dynamics, and IT performance/security. Although PLM systems address some aspects, they lack support for cocreation and often face resistance as collaboration platforms in cross-disciplinary projects, leading to fragmented communication via less secure channels. Consequently, there's a growing need for research to observe, quantify, and enhance Engineering Collaboration. However, existing scientific research relies on isolated case studies, focusing on individual tools, and suffers from a lack of generalizability and reproducibility. Absent are standardized methodologies for the collection of statistically reliable data.

Approach: In response to these pressing challenges, the EnCoBase project undertakes the task of creating a virtual laboratory explicitly designed for Engineering Collaboration experiments with the ulterior motive to improve collaboration and generate reliable measurements. Within the EnCoBase project, the "Methods and Tools" subproject is dedicated to the research of the fundamental elements of collaboration and methods which support Engineering Collaboration. This subproject involves a literature review, the execution of collaborative experiments, and the formulation of a standardized process specifically tailored for experiments which will be conducted in the virtual laboratory.

Result: The primary achievement of the "Methods and Tools" subproject is the development of a standardized process, rigorously tested through two illuminating "dry-run" experiments, conducted within the virtual laboratory environment. The standardized process establishes a robust framework for conducting engineering collaboration experiments, offering a foundation that assures replication and allows for meaningful comparisons. It serves as a cornerstone, ensuring the consistency and data quality essential for the empirical investigation. Another significant result is the preparation of a promising experiment that explores the efficiency of synchronous CAD sessions compared to traditional CAD systems.

Overview experiment "synchronous CAD compared to traditional CAD" Own presentment

Standardized process Own presentment

Advisor Prof. Dr. Felix Nyffenegger

Subject Area Business Engineering

