
Graduate

Adrian Locher

Jason Benz

CuSharp

A GPU Compute Framework for .NET

Own presentment
Overview of CuSharp Interacting with External Systems.

Own presentment
Performance Results of a Double-Type Matrix Multiplication.

Own presentment
Software Architecture of the CuSharp Framework.

Eastern Switzerland University of Applied Sciences | Bachelor Theses 2023 | Bachelor of Science OST | Informatik

System Software,
Software, Software
Engineering - Core
Systems

Subject Area

Christian Marrocco,
Arni AG, AG

Co-Examiner

Philipp Kramer
Advisor

Introduction: The number of computationally intensive
applications is growing. For many easily parallelizable
problems, GPUs offer better performance than CPUs.
As a result, GPUs are now used not only for graphical
applications, but also for machine learning and
cryptography. GPU-accelerated programs have
traditionally been written in C, C++ for high-
performance applications such as physics simulations
and graphical applications and more recently in
Python to optimize machine learning algorithms. Most
GPU-APIs, including Nvidia CUDA, restrict their
developers to using C, C++ or Python to write
programs targeting those APIs.

Result: In this thesis a framework called CuSharp has
been developed that allows developers to build and
run GPU-executable kernels directly in C#. This is
achieved by using existing toolchains complemented
by a specifically developed cross-compiler. The C#
kernel is compiled to Microsoft Intermediate
Language (MSIL) by the existing Roslyn compiler.
Subsequently, the CuSharp compiler cross-compiles
MSIL to NVVM IR, a platform-independent
intermediate representation. Finally, NVVM IR is
translated to PTX ISA, an assembly-like language for
Nvidia GPUs, using the NVVM compiler library
(libNVVM). The architecture also allows for future
development efforts to add cross-platform support.
CuSharp supports the compilation of static methods,
written in a specific C# subset, either just-in-time or
ahead-of-time. For a kernel that computes matrix
multiplications, a performance slowdown between
1.4% and 4.8% was measured for CuSharp-compiled
kernels compared to NVCC-compiled kernels (GPU
execution time of the kernel only).

Conclusion: This thesis shows the challenges of
interfacing with the LLVM compiler infrastructure and

the Nvidia CUDA API. In addition, it provides an
overview of the complex landscape of APIs that can
be used to interface with GPU devices in general, by
comparing their toolchains and languages.
Furthermore, it demonstrates that GPU kernels can
be written in a high-level language such as C# while
suffering only minor performance degradation.

