
Graduate

Carlo Del Rossi

Improving the Usability of the Haskell Substitution
Stepper

Own presentment
Stepping via the GHC compiler's interactive debugging mode

Own presentment

The sketch of a possible styling for the solution (from the task
description)

Own presentment
Stepping via the Haskell Substitution Stepper (The selected subterms are shown in green while the diff is underlined)

Eastern Switzerland University of Applied Sciences | Bachelor Theses 2023 | Bachelor of Science OST | Informatik

Software, Application
Design

Subject Area

Dr. Joachim Breitner
Co-Examiner

Prof. Dr. Farhad D.
Mehta

Advisor

Initial Situation: With functional programming
languages becoming more widespread and being
taught at Universities, many programmers will
eventually get in contact with them. Since functional
programs can be very different from imperative ones,
especially due to the heavy reliance on recursion, this
could be very interesting for all the people that are not
yet familiar with Haskell's concepts.

Problem: While functional languages like Haskell
have debuggers, they are not as user-friendly and
don't offer as much insight as debuggers for
imperative languages. The internal state of the
program is usually not displayed very
comprehensibly, which leads to the not being very
useful for learning processes.

Result: The goal of the Haskell Substitution Stepper is
to provide the user with the capability to step through
a Haskell program and to be able to see what
happens in the background when a function is
executed. This is supposed to solve the usability
problems that the regular Haskell debugger has.

For this, we came up with an application where the
user can specify a function that he would like to step
through
and the application would load this function and then
use Haskell's rules to step through. The user can see
the whole internal state of the term that is being
stepped through and the highlighting of the changes
makes it easy to see what happens in each step. The
user can choose between different modes of
derivation and can control the flow of the derivation.
The addition of helpful commands also allows the
user to skip certain parts of the derivation that might
not be interesting to them.

