
Students

Dominik Castelberg

Linus Flury

Large Language Models for development of Haskell
programs

Own presentment

Screenshot of how a student would use Chat GPT 3.5 to help
with a task. Accessed on 17.12.2023, https://chat.openai.com/

Own presentment

Jupyter Notebook Setup. Dotted elements are for usecases
involving automated code testing.

Own presentment

Normalized average score overall. Models: CodeLlama-13b-
instruct, Llama-2-13b, GPT-3.5 Turbo, GPT-4

Eastern Switzerland University of Applied Sciences | Student Research Projects 2024 | Bachelor of Science OST | Informatik

Zühlke Engineering AG,
Schlieren, Zürich

Project Partner

Software,
Miscellaneous

Subject Area

Prof. Dr. Mitra
Purandare

Advisor

Introduction: In recent years, Large Language Models
(LLMs) have become valuable tools for developers
with their ability to quickly scaffold code and act as an
impactful accelerator for development teams around
the world. With code being heavily standardized on a
global scale and an abundance of training data freely
available on platforms such as GitHub, it is easy to
intuit possible reasons for their performance. While
these assumptions hold true for popular languages
such as Java, Python or C#, there has been little
research in the usage of LLMs as development tools
for less commonly used languages such as Haskell.
With this project we aim to explore LLM based
development support for Haskell and develop an
environment, in which such research can be
conducted in a quick and efficient manner.

Approach: Four state-of-the-art models (Llama 2,
Code Llama, GPT-3.5 and GPT-4) were evaluated
based on their performance on tasks typically faced
by an automated development support tool. The tasks
were scoped and classified into three major
categories: Code Generation, Debugging and
Testing. For each of these categories, quantifiable
metrics for the evaluation of the model performance
were defined. These criteria must be interpretable as
quantifiable metrics to allow a comparative analysis
between models. These metrics were then weighted
according to their importance, based on the insight of
experts in the field of Haskell development. Each task
was executed with three sorting algorithms of varying
cognitive complexity in sample implementations.
Cognitive complexity was selected as the complexity
measure after careful evaluation, to ensure that the
ordering of the algorithms is based on complexity of
interpretability.
Utilizing cognitive complexity inspired us to frame
LLMs as entities whose performance can be analysed
through the lens of cognitive load theory. This
enabled the differentiation between errors caused by
the complexity of a provided algorithm (intrinsic load)
and errors caused by unclear instructions (extraneous
load).
To accelerate the evaluation processes, a
development environment, enabling both the
automated testing of generated Haskell code using
Jupyter notebooks and the utilization of cloud hosted
models with modern LLM tooling like LangChain, was
created.

Conclusion: Our work has shown that there are large
gaps in the output quality of each model. We have
encountered outliers, but we are confident that these
outliers were not caused by the intrinsic complexity of
the algorithms provided and can be explained with
extraneous complexity that lead to the model not
understanding the task. This problem can be resolved
with further prompt engineering and fine-tuning, which
is why we are optimistic about the viability of models
such as GPT-4 or Code Llama as supporting tools for

Haskell development.
Using Chain of Thought Prompting, which leads
models to break down given tasks into sequential
subtasks, tends to increase the output quality in
general. However the sequential nature of it lead to
inconsistencies in the compositions of Haskell's
higher-order functions. It lead the models to neglect
critical nuances in function composition, resulting in
erroneous code generation.

