
Students

Natalia Gerasimenko

Tim Gamma

Swisscom Design System – Server-Side-Rendering

https://sdx.swisscom.com
Example of Swisscom's web components

Eastern Switzerland University of Applied Sciences | Student Research Projects 2024 | Bachelor of Science OST | Informatik

Internet Technologies
and Applications

Subject Area

Prof. Dr. Markus Stolze
Advisor

Introduction: Swisscom has its own design system,
the Swisscom Digital Experience (SDX). It consists of
a component library, UX principles, design guidelines,
documentation, and rules. In this design system,
Swisscom offers web components, reusable styled
building blocks, build using StencilJS. This research
project investigates the integration of Server-Side
rendering (SSR) with these components. When built
with StencilJS and combined with SSR, web
components are not interactive and do incorporate
incorrect CSS styling. The project focuses on
addressing these issues. Additionally, it seeks
solutions for integrating these web components within
the frameworks Angular and Next.js.

Approach: The methodology involved a series of
experiments to tackle the challenges in implementing
SSR with StencilJS. These experiments included
resolving interactivity deficits and rendering
inconsistencies within Stencil’s SSR framework, as
well as exploring the integration of StencilJS web
components in Angular and Next.js frameworks. The
performance aspects of SSR were inspected in a
simple Node.js environment using Express.js as a
server and within an Angular application. The aim
was to comprehensively evaluate the efficiency and
responsiveness of SSR in different contexts.

Result: The findings revealed that manually adding
ESM scripts post rendering resolved the interactivity
issues. Incorrect CSS styling, linked to bugs in
StencilJS, was addressed through a CSS-grid based
workaround. The integration of StencilJS web
components with Angular was achieved by defining
Angular output targets and pre-rendering the
components. Integrating these components into
Next.js presented significant challenges. The
investigation revealed that, in its current state, Next.js
is not compatible with StencilJS. This necessitates
the development of react wrapper generator aimed at
encapsulating Stencil components within React
components, enabling seamless integration into the
Next.js framework. Regarding performance, SSR
generally demonstrated a faster response than client-
side rendering, particularly in the first contentful paint.
However, this performance advantage was not
consistent across all scenarios.

The outcome of this project showed that SSR is
possible with StencilJS web components. However,
we identified a number of remaining issues with the
current tooling for Stencil SSR support, necessitating
the development of custom solutions and
workarounds. While the integration of StencilJS web
components within Angular and Next.js is achievable,
it demands significant setup and configuration,
especially for Next.js. Nevertheless, as framework
compatibility improves, the efficiency and user
experience offered by SSR with StencilJS web
components are expected to become more

pronounced, highlighting the promising future of this
technology in web development.

