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Abstract: With regard to safety, efficiency and lifetime of battery systems, the thermal behavior of
battery cells is of great interest. The use of models describing the thermoelectric behavior of battery
cells improves the understanding of heat generation mechanisms and enables the development of
optimized thermal management systems. In this work, a novel experimental approach is presented
to determine both the irreversible heat due to ohmic losses and the reversible heat due to entropy
changes directly via heat flow measurements. No additional information about thermal properties of
the battery cell, such as heat capacity or thermal conductivity, are required. Thus, the exothermic
and endothermic nature of reversible heat generated in a complete charge/discharge cycle can be
investigated. Moreover, the results of the proposed method can potentially be used to provide an
additional constraint during the identification process of the equivalent circuit model parameters.
The described method is applied to a 23 A h lithium titanate cell and the corresponding results
are presented.

Keywords: lithium-ion battery cell; experimental method; reversible heat; equivalent circuit model

1. Introduction

The phenomenological modeling approach using an equivalent circuit model (ECM)
to describe the electrical behavior of Li-Ion cells is widely used in academia and industry.
The standard ECM of a Li-Ion battery cell consists of an ideal voltage source whose voltage
depends on the state of charge (SoC), an internal ohmic resistance R0, and one or more
parallel resistor-capacitor (RC) networks that approximate transient effects with various
time constants. Additionally, a voltage hysteresis dependent on the current flow direction
and a Warburg impedance can be added to increase the model accuracy. However, accurate
determination of the internal resistance and RC components is essential because they
significantly affect the terminal voltage of the cell. In most of the literature dealing with
RC models such as [1–3] among others, the capacitor of the RC-network is assumed to be
constant when formulating the differential equation, which leads to the well known form

dVi
dt

=
I

Ci
− Vi

Ri · Ci
, (1)

where Vi is the voltage drop across the ith RC-network and I is the total amount of current
flowing through the battery cell. In order to study the difference between varying orders
of RC models and other types of lumped parameter models comparative research can be
found in the literature [4,5]. Thereby, the model quality is often compared based on the
accuracy of the terminal voltage. Of course, this is very important when the ECM is used
for electrical considerations, such as SoC estimation [6]. However, if the model is coupled
with a thermal simulation, the correct estimation of the generated heat is also of great
interest [7,8].
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In general, the heat generation in Li-Ion batteries under charge or discharge is consid-
ered to include two main effects [9–11]. On the one hand, the over-potential due to ohmic
losses, charge transfer at the interfaces and mass transfer limitations in combination with
the current flowing from the anode to the cathode and vice versa, causes the generation of
an irreversible heat flow according to

Q̇irr = (V −VOCV)I , (2)

where V is the terminal voltage, VOCV the open circuit voltage (OCV) and I the current
flowing through the cell. The irreversible heat is always exothermic, which is defined to
be positive. Therefore, the discharge current must have a negative sign for Equation (2)
to be consistent. In terms of the equivalent circuit model the over-potential and hence the
irreversible heat can be expressed as

Q̇irr =

(
V0 +

N

∑
i=1

Vi

)
I , (3)

which is the sum of the voltage drops across the individual resistors times the total current
I flowing through the battery cell. Thereby, V0 is the voltage drop across the internal
resistance, Vi is the voltage drop across the ith of the N RC-networks employed in the ECM.
In addition, according to the literature [12,13] an entropic heat flow is expected to appear
due to charge and discharge reactions at the electrodes, which can be expressed as

Q̇rev = T
∆S

n · F I = T
∂VOCV

∂T
I , (4)

where T is the cell temperature, ∆S the entropy change, n the charge number pertaining to
the reaction (n = 1 for Li-Ion batteries), F the Faraday constant, and I the charge/discharge
current. The reversible heat can be both exothermic or endothermic depending on the
state of charge and the direction of current flow. The two parts from Equations (2) and (4)
contribute to the total amount of heat flow Q̇tot generated by the cell. When combining
dozens or hundreds of cells to form a large scale battery system, the thermal behavior of a
single cell and hence its heat generation is of great interest. As concluded by Zhao et al. [14]
the reversible heat should not be neglected in heat generation models. Especially, if the
simulation of the thermoelectric behavior is used for the design of an appropriate thermal
management system, which allows the battery system to be operated under the best
possible conditions. In order to come up with such a model, experimental efforts are
required to identify the relevant model parameters.

In many studies the reversible heat is determined by measuring the change in open
circuit voltage as a function of the cell temperature at various SoC levels [15,16]. This so-
called potentiometric method leads to the entropic heat coefficient ∆S/(n · F) and therefore
the reversible heat can be calculated according to Equation (4). This method has widely
been used to study the influence of various parameters on the entropic coefficient [17].
Greifes et al. [18] has successfully combined the potentiometric method with the pulse
relaxation method to safe time and effort. A detailed study of the potentiometric method
by Zilberman et al. [19] even shows nonlinear behavior and hysteresis effects in the re-
lationship between voltage and temperature and suggests to minimize the temperature
pulse amplitude.

Another approach in the literature is based on accelerated-rate calorimetry (ARC),
in which the generated heat and the corresponding increase in cell temperature are mea-
sured directly [20]. Under the assumption of a homogeneous cell temperature the total
heat is calculated using the measured heat flow and the thermal properties of the cell
according to

Q̇tot = m · cp
d Tm

d t
+ Q̇m , (5)
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which essentially means that the total heat flow Q̇tot generated is equal to the measured heat
flow Q̇m at the surface of the cell (i.e., the amount of heat exchanged with the environment
per unit of time) plus the derivative of the measured cell temperature Tm with respect
to time (i.e., the sensible heat stored in the thermal mass of the cell). This is necessary
because the heat flow detected at the cell surface can be understood as the output of a first
order delay element, whose input corresponds to the internally generated heat. A similar
approach is reported in [21,22], where local heat flux and temperature measurements were
used instead of an ARC. According to Sheng et al. [23] a similar approach with an improved
calibration method was used to achieve results comparable to the one obtained from ARC
measurements. The main benefit offered by the approaches described in [21–23] is the
much lower cost of the required test equipment. In all these methods, which involve heat
flow measurements, an increase in cell temperature is accepted during the course of an
experiment. This implicates some difficulties, since most of the parameters depend on
the cell temperature itself. In the method presented by Geng et al. [24], the cell is kept
virtually in a thermal steady state during the determination of the entropic coefficient. This
is achieved by a series of relatively short charge/discharge pulses that result in a moderate
temperature change.

In all of the previously mentioned approaches, which aim to reduce the time required
by the potentiometric method, thermal properties, such as the specific heat capacity and
thermal conductivity, of the cell are needed. There are numerous methods to experimentally
determine the specific heat capacity cp of a battery cell. In contrast, the thermal conductivity
k from the interior of the cell to its surface can be rather difficult to obtain.

This work describes a method to determine the entropic coefficient and the generated
irreversible heat using localized heat flow measurements based on the pulse relaxation
method. Thereby, the surface temperature of the cell is kept at a constant level, thus
neither the specific heat capacity cp nor the thermal conductivity k of the cell are required,
which can be considered a significant advantage over existing approaches. To the authors’
knowledge this type of experimental approach has not been reported before.

In the following section, the experimental setup is described and an analytical solution
for the expected thermal response is derived. Afterwards, the measurement results are
presented and the agreement with the previously found analytical function is discussed.
Furthermore, a reduced test procedure with minimal experimental effort is proposed.
Finally, it is considered how this method could also improve the determination of RC
parameters and where its limitations lie.

2. Materials and Methods

The method described in this paper was applied to a prismatic lithium titanate cell.
The outer dimension of the cell is (103× 115× 22)mm3 and it provides a nominal storage
capacity of 23 A h. A specially developed test bench was used to measure the generated
heat flow during charge/discharge cycles. The test bench consists of several temperature
and heat flow sensors (THFS) arranged around the cell under test. The specially developed
and calibrated THFS units comprise a type K thermocouple for measuring the surface
temperature and a thermoelectric generator (Peltier-element) as a heat flow sensor. The cal-
ibration procedure used to achieve high accuracy heat flow measurements is described
in [25]. The most important feature of the THFS units is the ability to actively control
the surface temperature or the transmitted heat by means of a closed loop control system.
At the same time, the heat flow emitted or absorbed by the battery cell is measured along
with the surface temperature. A detailed description of the used test bench and its modes
of operation is given in [26].

In this particular experiment with the cell mentioned above, a total of 44 sensors were
used, each with an active measuring surface of (15× 15)mm2. The sensors thus cover
approximately 30% of the cell surface, while the remaining area is covered with a thermal
insulation foam. For this investigations, the THFS were operated in temperature controlled
mode with a set point of 25 °C. In order to minimize the heat loss across the thermal
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insulation foam in between the active THFS units, the complete setup is placed inside an
air-conditioned chamber (see Figure 1). The temperature inside the chamber is maintained
at the same level as the surface temperature of the cell by means of a radiator with a fan to
generate a forced air flow.

Battery Cell

THFS units thermal insulation

air-conditioned chamber

a)

b)

c)

Figure 1. Schematic drawing (a) of the used experimental setup on the left, with an insulated battery
cell placed inside the air-conditioned chamber. On the right hand side two photographs of the THFS
units before (b) and after (c) the installation of a battery cell.

To charge and discharge the battery cell a NL-1V8C320 source/sink device from
Höcherl & Hackl (H&H) is used in conjunction with a specifically designed LabView™
interface. The cell voltage is measured at the battery terminals using separate sensing
probes. For accurate voltage measurements a four channel 24-bit analog digital converter
(ADC) from the NI-cDAQ series is used (NI-9219). In order to determine the actual current
flow, the voltage drop across a calibrated shunt with a resistance of (103.694± 0.092)µΩ is
measured. In accordance to the manufacturers specifications the ADC exhibits a type B
standard uncertainty of ±9.5 µV for voltage measurements up to 100 mV. Using the law of
error propagation the combined standard uncertainty of the current measurement can be
calculated to be ±0.1 A, which corresponds ±0.1% for current values up to 100 A.

At the beginning of the experiment the cell is in thermal and electrical equilibrium at
90% SoC. The cell is then discharged to 10% SoC with a sequence of 10 constant current
pulses. The exact same sequence of current pulses is then used to charge the cell in order to
reach the initial SoC, thus completing a full discharge/charge cycle. The maximum SoC
range, which can be covered by this type of experiment depends on the internal resistance
of the cell and the utilized C-rate. Therefore, the headroom between the open circuit voltage
and the end-of-charge voltage must be large enough to account for the voltage drop across
the internal resistance caused by the highest current pulse amplitude. A relaxation phase
of 1 h is introduced between two consecutive current pulses in order to allow the cell to
approach the thermal equilibrium state. The experiment was repeated with five different
current levels as given in Table 1.

In the literature, many different methods are described to determine the internal
resistance of the battery cell [27,28]. The aim of the approach presented in this paper was
to capture the purely resistive component, thus any influence such as the change of OCV
or transient phenomenon must be suppressed. For this purpose, a triggered high-speed
voltage measurement with a pre-trigger buffer was employed. For each detected rising or
falling edge in the current signal, the 2 kHz data acquisition system was activated for a few
seconds. Since the DC power supply used can only realize a finite current slope, the data
points captured during the ramp-up can be used to determine the internal resistance R0.
The results of such a hi-speed measurement is shown in Figure 2. At the beginning the
cell exhibits an OCV of about 2.36 V. Then the DC power supply generates a current
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ramp to the desired discharge current of −34.5 A, which is than held constant for the rest
of the discharge pulse. Obviously, the terminal voltage of the cell drops further, due to
the transient over-potential and SoC change, after the constant current has been reached.
The ramp-up section of the curve, shown in red in Figure 2, lasts 100 ms and is defined
by a lower and upper current threshold. As can be seen, this section of the curve clearly
exhibits a linear relationship between the terminal voltage of the cell and the applied
current, indicating that purely resistive behavior is present. To quantify the slope and thus
the ohmic resistance, a linear regression is used, which in this particular case yields a value
of 0.6 mΩ.

Table 1. Sequence of applied current pulse amplitude and duration for the five conducted experiments. The transferred
electrical charge qel and therefore the SoC levels are identical in all experiments.

SoC before 0.25C 0.5C 1C 1.5C 3C
Pulse Ip tp Ip tp Ip tp Ip tp Ip tp

90.0% −5.8 A 12 min −11.5 A 6 min −23.1 A 3 min −34.5 A 2 min −69.1 A 1 min
85.0% −5.8 A 12 min −11.5 A 6 min −23.1 A 3 min −34.5 A 2 min −69.1 A 1 min
80.0% −5.8 A 24 min −11.5 A 12 min −23.1 A 6 min −34.5 A 4 min −69.2 A 2 min
69.9% −5.8 A 24 min −11.5 A 12 min −23.1 A 6 min −34.5 A 4 min −69.2 A 2 min
59.9% −5.8 A 24 min −11.5 A 12 min −23.1 A 6 min −34.6 A 4 min −69.2 A 2 min
49.8% −5.8 A 24 min −11.5 A 12 min −23.1 A 6 min −34.6 A 4 min −69.2 A 2 min
39.7% −5.8 A 24 min −11.5 A 12 min −23.1 A 6 min −34.5 A 4 min −69.2 A 2 min
29.7% −5.8 A 24 min −11.5 A 12 min −23.1 A 6 min −34.6 A 4 min −69.2 A 2 min
19.6% −5.8 A 12 min −11.5 A 6 min −23.1 A 3 min −34.5 A 2 min −69.2 A 1 min
14.6% −5.8 A 12 min −11.5 A 6 min −23.1 A 3 min −34.5 A 2 min −69.2 A 1 min
9.5% 5.8 A 12 min 11.5 A 6 min 23.0 A 3 min 34.5 A 2 min 69.1 A 1 min

14.6% 5.8 A 12 min 11.5 A 6 min 23.0 A 3 min 34.5 A 2 min 69.1 A 1 min
19.6% 5.8 A 24 min 11.5 A 12 min 23.0 A 6 min 34.5 A 4 min 69.2 A 2 min
29.6% 5.8 A 24 min 11.5 A 12 min 23.0 A 6 min 34.5 A 4 min 69.2 A 2 min
39.7% 5.8 A 24 min 11.5 A 12 min 23.1 A 6 min 34.5 A 4 min 69.2 A 2 min
49.7% 5.8 A 24 min 11.5 A 12 min 23.1 A 6 min 34.5 A 4 min 69.2 A 2 min
59.8% 5.8 A 24 min 11.5 A 12 min 23.1 A 6 min 34.5 A 4 min 69.1 A 2 min
69.8% 5.8 A 24 min 11.5 A 12 min 23.1 A 6 min 34.5 A 4 min 69.1 A 2 min
79.8% 5.8 A 12 min 11.5 A 6 min 23.0 A 3 min 34.4 A 2 min 56.0 A 1 min
83.9% 5.7 A 12 min 11.5 A 6 min 23.0 A 3 min 33.9 A 2 min 41.4 A 1 min

-40 -30 -20 -10 0 10
2.3

2.31

2.32

2.33

2.34

2.35

2.36

2.37

Figure 2. Hi–speed measurement of the cell’s terminal voltage plotted against the applied current
(blue), with the ramp-up section (red) used to determine the slope by means of a linear regression
(dashed black).
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Analytical Solution of the ECM Thermal Response

Consider a cell whose surface is actively cooled to maintain a temperature of lets
say 25 °C. Furthermore, it is assumed that the cell was kept under these conditions long
enough to reach a thermal equilibrium state before the experiment is started. If the cell is
now charged or discharged using a constant current pulse with amplitude Ip for a certain
duration tp, the generated heat leads to an internal temperature gradient and thus to a
measurable heat flow at the surface of the cell. Consider the thermal state of the cell at time
tp (i.e., at the end of the charge or discharge pulse):

• A certain amount of heat Qtot has been generated due to the current pulse.
• Some part of this heat has already been released into the environment due to the

existing internal temperature gradient.
• The other part of the generated heat is still stored in the heat capacity of the battery cell.

Thereafter, the cell is kept in a thermal relaxation state, with no further charging or
discharging taking place until the final time tf is reached. Within this time, the stored
thermal energy is released to the environment and the cell approaches the same thermal
equilibrium state as before the current pulse was applied. Hence, it can be stated that the
integral of the heat flow Q̇m measured at the surface is equal to the total amount of heat
Qtot generated by the charge or discharge pulse, as expressed by

Qtot =
∫ tf

0
Q̇m dt = Qirr + Qrev . (6)

In the following, presupposing that the transferred charge qel = Ip · tp is constant (i.e.,
the pulse duration tp is reduced by a factor of two, when the current pulse height Ip is
doubled), analytical functions are derived to illustrate the dependency of the reversible
and irreversible heat on the C-rate. Calculating the integral of Equation (4) over the current
pulse duration tp yields to

Qrev =
∫ tp

0
T

∆S
n · F Ip dt = T

∆S
n · F Ip · tp = T

∆S
n · F qel , (7)

which is a function of the electric charge qel, but independent of the C-rate itself. In the
same way the irreversible heat can be calculated by integrating over the pulse duration tp
according to

Qirr =
∫ tp

0
Ip(V −VOCV)dt = Ip

(∫ tp

0
V0 dt +

∫ tp

0
V1 dt

)
. (8)

Here the over potential (V −VOCV) is separated in two parts, where V0 is the voltage drop
across the internal resistance R0 and V1 is the voltage drop across the RC-network. For the
sake of simplicity the analytical solution will be derived and discussed based on a single
RC-network. However, the findings can be generalized for any number of RC-networks in
an ECM.

The voltages V0 and V1 are given in Equations (9)–(12) together with the corresponding
integrals used in Equation (8). Thereby, the input I of the differential equation given in
Equation (1) is considered to be the heaviside function I = Ip · σ(t) with a constant current
amplitude of Ip. In addition, it is assumed that the initial voltage across the RC-network is
V1(0) = 0, thus for t ≥ 0 it follows that

V0 = R0 · Ip , (9)∫ tp

0
V0 dt = R0 · Ip · tp , (10)
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V1 = R1 · Ip ·
(

1− e−t/τ
)

, (11)∫ tp

0
V1 dt = R1 · Ip · tp − R1 · Ip · τ ·

(
1− e−tp/τ

)
. (12)

Here, the irreversible heat generated during a current pulse can be normalized with the
electrical charge, which leads to the following expression

ξ =
Qirr

qel
= R0 · Ip + R1 · Ip −

R1 · Ip · τ
tp

(
1− e−tp/τ

)
. (13)

In the above representation the current pulse amplitude Ip and the current pulse duration
tp are not independent from each other, but rather coupled through the constant electric
charge transferred in each pulse. Therefore, Equation (13) can be expressed strictly as a
function of either Ip or tp leading to

ξ(Ip) = R0 · Ip + R1 · Ip −
R1
(

Ip
)2

τ

qel

(
1− e−qel/(τ·Ip)

)
(14)

and

ξ(tp) =
(R0 + R1)qel

tp
− R1 · qel · τ

(tp)2 ·
(

1− e−tp/τ
)

. (15)

As can be seen in Figure 3, the analytical solution approaches a purely resistive behavior
with (R0 + R1) · Ip for small currents. This is reasonable, because a small current amplitude
is equivalent to a long pulse duration, in which case the transient portion of V1 becomes
negligible if tp � τ. To confirm this, the limit of the derivative of ξ(Ip) with respect to
Ip must be calculated. In order to simplify this calculation, a change of variables is made
using γ = tp/τ to represent the ratio between the pulse duration and the time constant of
the RC-network in use, which leads to

dξ(Ip)

dIp

∣∣∣∣
Ip=

qel
τ·γ

= R0 + R1
(
1 + e−γ

)
− 2R1(1− e−γ)

γ
. (16)

Therefore, the limit can be calculated as

lim
Ip→0

dξ(Ip)

dIp
= lim

γ→∞
R0 + R1

(
1 + e−γ

)
− 2R1(1− e−γ)

γ
= R0 + R1 . (17)

For large C-rates on the other hand, the generated heat per charge seams to approach a con-
stant offset to the lower bound behavior R0 · Ip. This offset can be calculated according to

δ = lim
Ip→∞

(
ξ(Ip)− R0 · Ip

)
= lim

γ→0

R1 · qel
γ · τ − R1 · qel(1− e−γ)

γ2 · τ =
R1 · qel

2 · τ , (18)

when using the same change in variables introduced earlier. Between the two extreme
cases (Ip → 0) and (Ip → ∞), a transition point can be defined using the intersection of
the two asymptotes as defined by

(R0 + R1)I∗p = R0 · I∗p + δ . (19)

The transition current I∗p can be calculated from Equation (19) by a simple rearrangement
of the terms, which leads to

I∗p =
δ

R1
=

qel
2 · τ . (20)

If the reversible heat Qrev in Equation (7) is normalized with the constant electric charge
qel, it can be combined with the expression from Equation (14), which represents the
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normalized irreversible heat. This sum is equal to the integral of the measured heat flow
Q̇m divided by the integral of the measured current (i.e., the electric charge qel) according to

Qm

qel
= ξ(Ip) +

∆S
n · F T . (21)

The resulting relationship in Equation (21) can be used to perform a non-linear best fit on
the experimental data. The constant term, i.e., the ordinate intercept, can than be divided
by the absolute temperature T in order to calculate the entropic heat coefficient (EHC).
Moreover, the above derived analytical solution is also valid for a sum of more than one
RC-network. Indeed, the calculated limits in Equations (17) and (18) still hold, when
replacing the single resistor value R1 with the sum of all resistor values present

(
∑N

i=1 Ri

)
.

Of course, the shape of the function in the transition region will change in this case, since it
will be described by the superposition of N terms according to Equation (12). However,
the effect on the constant term is negligible.

Figure 3. Qualitative characteristic of the irreversible heat generated as a function of the current
pulse height. The heat is normalized with the constant amount of electrical charge qel transferred
during each current pulse. Analytical solution ξ(Ip) as given in Equation (13) (solid line), solution for
a purely ohmic internal resistance R0 · Ip (dashed line) and solution for a fully charged RC-network
(R0 + R1) · Ip (dot-dashed line) . The transition current I∗p and the constant offset δ are marked in red.

3. Results

The results of the measured heat flow will be discussed on the basis of an exemplary
chosen data set, namely the 3C experiment between 60% to 70% SoC. For the comparison
with the analytic function and the evaluation of the goodness of fit, all experiments at
the above mentioned SoC interval are considered. In the last step, the results of different
methods for determining the reversible heat over the whole SoC range are compared.

As an example, Figure 4 shows the result of a measurement carried out in accordance
with the procedure described above. In order to achieve the desired 10% change in the
SoC a 69 A (3C) current pulse with a duration of 2 min is applied. As can be seen, the total
amount of heat generated during the discharge pulse is significantly higher than that
during the charging phase. This already indicates the presence of reversible processes
in this particular state of charge. Furthermore, it is noticeable that only a fraction of the
generated heat is released during the first 2 min of the experiment (i.e., during the actual
current pulse). The exact amount of heat released during each phase of the test are given in
Table 2.
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Figure 4. Measured heat flow over time for a 69 A (3C) current pulse with a duration of 2 min, which
corresponds to a 10% change in the SoC. In this particular measurement the SoC has changed from
60% to 70%. The 2 min current pulse duration is marked with the black dashed line.

Table 2. Total amount of heat generated during a 3C charge/discharge pulse, compared to the amount
of heat released during the first 2 min. Thereby, tf = 60 min is the total time of the experiment, while
tp = 2 min is the current pulse duration.

Current
Direction

Total Amount of
Heat

∫ tf
0 Q̇m dt

Heat Released during
Pulse

∫ tp
0 Q̇m dt

Percentage of Heat
Released after tp

discharge 2156.2 J 406.1 J 81.2%
charge 631.7 J 211.0 J 66.6%

As shown in the close-up of Figure 4 the measured heat flow is still rising, even after
the current has been switched off. This extreme case of the effect only takes place for very
short current pulses and correspondingly high C-rates. Nevertheless, the percentage of
heat released after the current pulse (i.e., for t ≥ tp) is above 46% for all the measurements
taken. Hence, it can be concluded that the thermal relaxation phase is an essential part
of the test procedure to ensure that all heat generated during a charge or discharge pulse
is captured by the heat flow measurements. The analysis of the measured heat flow as
depicted in Figure 4 involves time integration over long time periods. Therefore, a high
accuracy and in particular a low offset of the heat flow measurement is essential. A sensor
offset as low as 1 mW would add up to an error of 3.6 J over one hour. Although this is
less than 0.2% of the largest energy measured (i.e., 2156.2 J during the 3C discharge pulse
at 70% SoC), the error might be in the same order of magnitude as the measured value
itself at another operating point. For instance, during the 1.5C charge pulse in Figure 5 the
reversible and irreversible components cancel each other out, so that the total amount of
heat measured is only 2.5 J.
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Figure 5. Total amount of heat generated at various current amplitudes with the SoC changing from
60% to 70% for positive currents and vice versa for negative currents.

In order to perform the nonlinear least square fit on the measured data, the analytic
function given in Equation (21) should be used. However, since the measured behavior of
the cell during charging and discharging is not always symmetrical, two different sets of
coefficients were used for the fit. This leads to the final form(

Ip < 0
)
· ξ−(Ip) +

(
Ip > 0

)
· ξ+(Ip) +

∆S
n · F T , (22)

where ξ−(Ip) and ξ+(Ip) represent the irreversible heat according to Equation (14). Thereby,
the internal ohmic resistance R0 is determined based on current and voltage data as
described earlier. Therefore, the remaining coefficients for the fit are R1 and τ, which
represent an equivalent time constant and the total resistance of all transient phenomenon.
In Table 3 the fitted coefficients for the data shown in Figure 5 are given together with their
respective confidence bound.

Table 3. Fitted coefficients including the 95% confidence bound.

SoC Range (∆S/n·F)T R1+ R1− τ+ τ−

90% to 85% (−5.4± 3.1)mV (3.38± 0.52)mΩ (1.88± 0.26)mΩ (21± 23) s (41.7± 9.5) s
85% to 80% (−12.0± 4.1)mV (2.93± 0.57)mΩ (1.90± 0.32)mΩ (27± 18) s (42.4± 9.7) s
80% to 70% (−26.2± 4.3)mV (2.45± 0.35)mΩ (1.90± 0.34)mΩ (22± 13) s (45± 12) s
70% to 60% (−108.8± 4.6)mV (3.13± 0.43)mΩ (2.40± 0.37)mΩ (48± 14) s (50± 11) s
60% to 50% (−16.6± 3.6)mV (2.21± 0.31)mΩ (2.46± 0.28)mΩ (33± 13) s (48.4± 7.7) s
50% to 40% (1.7± 2.6)mV (2.30± 0.23)mΩ (2.38± 0.20)mΩ (40.3± 9.3) s (45.5± 6.1) s
40% to 30% (0.0± 3.2)mV (2.27± 0.28)mΩ (2.47± 0.25)mΩ (44± 12) s (44.3± 7.6) s
30% to 20% (−3.7± 2.9)mV (2.16± 0.27)mΩ (2.62± 0.23)mΩ (48± 12) s (43.3± 6.8) s
20% to 15% (−5.4± 4.9)mV (2.36± 0.60)mΩ (3.15± 0.44)mΩ (50± 18) s (49± 11) s
15% to 10% (−6.2± 4.8)mV (2.49± 0.60)mΩ (3.31± 0.44)mΩ (53± 17) s (48± 11) s

4. Discussion

The fit shown in Figure 5 exhibits an adjusted coefficient of determination of R̄2 = 0.9996
and residuals below 2.5 mJ/(A s), thus it can be stated that the observed data is well
described by the model that has been utilized. Further, it is noticeable that the prediction
bounds are small only for small currents around Ip = 0 A. This means that the fit with the
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existing data set is incapable to extrapolate the behavior. The reason for this becomes clear,
when the transition current is calculated according to Equation (20), which corresponds
to 84.1 A (3.7C). Hence, all available data points lie in the low current domain, where the
dominant behavior is equal to

Qm

qel
= (R0 + R1)Ip +

∆S
n · F T . (23)

Because the constant term depends only on the low current domain, it exhibits the lowest
confidence bound of ±4.2% of the fitted value. The resistive coefficients R1, which are
fitted independently for both current directions, already show a slightly higher confidence
bound of ±13.7% and ±15.4%, respectively. This can be explained due to the fact, that this
coefficient also determines the behavior in the high current domain, where no experimental
data is available. The effect becomes even more distinct for the time constants τ, which
according to Equation (18) only have an influence on the high current domain. As a
consequence, the correspondingly high confidence intervals of ±22.0% and ±29.2% arise.
If one seeks to improve the confidence bounds of these coefficients, experimental data
describing the behavior in the high current domain is required. This can be accomplished
in two different ways. First, the current amplitude Ip could be further increased. However,
in doing so, the cell must be able to cope with the applied charge/discharge currents.
In addition, the SoC range for experiments is reduced by the increasing voltage drop.
Secondly, the electric charge qel transferred in one current pulse could be reduced, since it
is proportional to the transition point according to Equation (20). For instance, to achieve
a transition point of Ip = 23 A (1C), the electric charge must be reduced by a factor of
3.7, resulting in rather small SoC steps of only 2.7%. Despite the advantage of a higher
resolution over the SoC range, the disadvantage of a significantly increased test duration
might prevail. This is due to the fact that the thermal relaxation phase of 1 h is required
after each of the nearly 40 current pulses.

However, if the main focus is on the determination of the EHC, the available data are
conclusive. Under certain circumstances, the number of experiments required could be
reduced. At low C-rates, the measured heat approaches the purely reversible component.
Therefore, the mean value from the two experiments with the smallest positive and negative
current could be used, respectively. Thereafter, the ordinate intersect, i.e., the entropic heat
coefficient, can be calculated as

EHC =
Qm(0.25C) + Qm(−0.25C)

2 · qel · T
. (24)

When analyzing the deviation of the two methods shown in Figure 6 together with the
fitted coefficients in Table 3, it can be stated that the deviation increases with increasingly
asymmetrical behavior. This makes sense, since for perfectly symmetrical data any two
points with the same current magnitude but opposite direction could be used for the averag-
ing approach. However, as the asymmetric behavior increases, smaller and smaller current
magnitudes would have to be used to obtain a good approximation for the constant term.

For verification purposes, the entropic heat coefficient at 65% SoC was also determined
by means of the potentiometric method. To do so, the open circuit voltage was measured
at 4 different temperatures in the range of 20 °C to 35 °C. The measured data in Table 4
follows a quadratic behavior of the form

f (T) = −2.65× 10−6T2 − 2.26× 10−4T + 2.34 . (25)

After calculating the gradient of the second order polynomial describing the OCV, it can be
evaluated at the relevant temperature of 25 °C, which leads to

d f (T)
dT

= −5.30× 10−6T − 2.26× 10−4
∣∣∣∣
T=25 °C

= −358.5
µV
K

. (26)
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This value is in good agreement with the values obtained from the fitted coefficient (i.e.,
−365.0 µV/K) and averaging method (i.e., −357.5 µV/K), respectively.

Figure 6. EHC calculated from the fitted coefficient (∆S/n·F)T including the 95% confidence bound
over the SoC range (red) in comparison with the simpler approach of averaging the low current
measurements according to Equation (24).

Table 4. Open circuit voltage measured as a function of cell temperature at 65% SoC for verifica-
tion purposes.

T 20 °C 25 °C 30 °C 35 °C
OCV 2.338 777 V 2.337 033 V 2.335 198 V 2.333 188 V

5. Conclusions and Outlook

The results presented in this paper show, that the described method is a viable ap-
proach to determine the entropic heat coefficient of a Li-Ion battery cell through heat flow
measurements. A major difference to existing studies is the constant surface temperature
of the battery cell throughout the experiment. Also, the approach might be advantageous
because the used current pulse profile is identical to the one used for the parameter identifi-
cation of the ECM. Hence, no additional experiments are needed to determine the entropic
heat coefficient. In particular, it was demonstrated that the proposed method does not
require the knowledge of the thermal properties of the cell, which are often difficult to
obtain. It can be further concluded, that the presented method is not suitable to fit the
parameters of more than one RC-network. Although, this would be possible in principal,
many more measurements with various current amplitudes would be necessary. This
requirement renders the approach unfeasible for this task.

However, further synergies of the test procedure can be utilized. For instance, the pa-
rameter τ could be identified based on the electrical relaxation data. This may reduce
the high uncertainty of this parameter as shown in the results of this paper. Furthermore,
the measured irreversible heat can potentially be used as an additional constraint in iden-
tifying the ECM parameters. Future work will therefore focus on combining the method
presented here with the classical determination of the resistance and capacitance values
of RC networks to provide an experimentally verified thermoelectric model. The reason
for the dependency of the irreversible heat on the current direction, which has led to the
observed asymmetric behavior, will also be investigated further. For this purpose, a next
generation of the described test bench is being built to further increase the accuracy of the
temperature and heat flow measurements.
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